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1. Executive Summary

1.1 Suivey of effort

This document summarizes effort conducted under the contract F49620-92-C-0006,
“Development of Combined Asymptotic and Numerical Procedures for Trarisonic and
Hypersonic Flows.” In the hypersonic portion of the effort, stability and transition,
unsteady aerodynamic characteristics and stability, strong inviscid/viscous interactions -
and potential application of instabilities to scramjet combustors were emphasized. Major
aspects of the work included a study of three-dimensional disturbances in hypersonic
" boundary layers. These are particularly important to scramjet inlet design. We have
investigated Jow frequency instabilities of viscous hypersonic flow over a flat plate using
triple-deck methods. QOur eigensolutions indicate the existence of an upstream
propagating stable mode which is the unsteady counterpart of the steady two-dimensional
Neiland-Brown-Stewartson solutions. We have also discovered a downstream-
propagating unstable mode. This leads to a three-dimensional instability and is controlled
moderately supersonic flow physics. Calculations of growth rates and analysis of the
forced problem for the experimentally significant time-harmonic vibrator show that at
sufficiently Jow frequencies, the downstream far field transverse projection consists of
Gaussian lobes symmetrically disp!aced about the source axis. For frequencies exceeding
a critical value, only one lobe occurs. The width of this lobe contracts, in contrast to the
expansion of conventional wakes, For wavelengths of the order of the boundary layer .
thickness and phase speeds less than unity, we have discovered new waveguide
reflectional instability mechanisms that can be important for strong, moderate and weak
interaction between the shock and boundary layers. These results can be readily extended
to three-dimensional flows. Our asymptotic analyses show that to first order in the
displacement’ thickness, the upper boundary layer edge behaves as a solid wall that
reflects boundary-layer disturbances. This is a viscous generalization of energy trapping
instability mechanisms discussed by the Principal Investigator in an inviscid context in
[C1]. These compete with other more well known instability modes that produce:
premature transition and are therefore of importance to hypersonic design and propulsion-
airframe integration. In addition to this boundary layer “lower” wave guide, and “upper”
one exists between the shock and the sonic line. At mode synchronism points between
upper and lower wave guides, singular growth spikes occur that invalidate the modal
decomposition used in state-of-the-art linear stability/transition prediction theories/codes.
The waveguide concepts have been studied in connection with control of transition
by absorbing walls and demonstrated reduction of amplification with increased wall
absorption. From the stability asymptotics, practical transition delay concepts have
been identifled using conventional thermal protection materials having
ultrasonically selective properties. For thin shock layers, we have extended steady
Newtonian asymptotic theory to the unsteady case. We have used the theory to -
demonstrate the existence of a new finite-amplitude Inflectional Instability that may
be useful to promote pre-mixing and enhanced bnrnlng efficiency for scramjet
combustors. The unsteady Newtonian model is useful in other contexts such as
hypersonic ueroelasticity and flutter. As another application of our hypersonic
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theories, similitudes have been used to collapse re-entry cone transition data to
provide an efficlent prediction tool for the scientist, engineer and designer. In the
transonic regime, we have developed the basis for wind tunnel wall interference
predictions for slender and not-so-slender bodies in wind tunnels. The singular
perturbation theory is interacting with experiments that we are conducting in the Russian
TsAGI T-128 wind tunnel leading to the generalization of our Transonic Area Rule for
Wind Tunnel Wall Interference (TARWI) to test articles of length comparable to the wall
height. The TsAGI tests have validated our matched asymptotics derivation of the
TARWL The TARWI reduces the three-dimensional wall interference correction
problem to one in two-dimensions. This will provide test engineers a basis for
estimation of transonic blockage corrections and optimization of model size for
maximum unit Reynolds number and minimum wall interference. Also to be described in
what follows are other theories for lift interfcrence in porous wind tunnels as well as
corrections for non-circular walls that we have derived in the effort. To our knowledge,
this is the first time such comrsctions have been embedded in systematic asymptotic

approximation procedures.

1.2 Personnel associated with research effort

e Dr. Norman D. Malmuth

e Professor Julian D. Cole

e Dr. Alexander V. Fedorov

o bt. André Khokhlov

e Professor Vladimir Ya Neiland
e Dr. Vera M. Neyland

o Iyofessor Oleg Ryzhov

1.3 Cumuiative list of publications associsted with effort

C1.Malmuth, N.D. “Stability of the inviscid shock layer in strong interaction flow over a
hypersonic flat plate,” in Instabilities and Turbulence in Engineering Fiows, eds. D.E.
Ashpis, T.B. Gatski and R. Hirsh. Kluwer Academic Publishers, 1993,

- C2.Malmuth, N.D., Jafroudi, H., Wu, .C.C, McLachlan, R. and Cole, J.D. “Asymptotic
methods applied to trunsonic wall interference,” AJAA J. 31 S, pp. 911-918, May
1993. '
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' C3.Malmuth, N, “Unsteady hypersonic thin shock layers and flow stability,” invited
paper at Wright Patterson Hypersonics Meeting, Wright Patterson AFB OH, May 17-
19, 1993 also invited paper International Workshop on Modeling of Aerodynamic
Flows, Hotel Amber Baltic, Miedzyzdroje, Poland, July 12-14, 1993 in Advances in
analytical Methods in Modeling Aerodynamic Flows, edited by J.D.A. Walker, M.
Bamctt and F.T. Smith. AIAA , 1994. :

_C4.Fedorov A. and N. Malmuth. “High Mach number similarity in the prediction of
boundary layer transition on circular cones,” AJAA J., 33 8, August 1995, 1523.

CS.Malmuth; N.D. Neylaxid, V.M. and Neiland, V. Ya “Wall Interference Ovér Smalland . -

Large Aspect Ratio ngs -in Wind Tunnels,” invited paper, Second Pacific
International Meeting in Aerospace Technology PICAS‘1'2-AAC6 in peer-reviewed
proceedings, Melboumne, Australia, March 1995,
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- 2. Mechanism of Hypersonic Flow Stabilization by a Semi-.
Transparent Wall

2.1 Introduction

The ability to predict and contro) the locaticn of boundary layer transition is of critical
importance in the design and optimizatioss of aerospace vehicles [1]. Transition causes
significant increases in heat transfer and skin friction. This leads to diminished vehicle
-performance, primarily because of the additional weight of thermal protection system
(TPS).

If external disturbances are small and the TPS roughness is negligible, then the transition
process is due to amplification of unstable modes in the boundary layer [1], [2]. In this
case, stability theory and experiment form a foundation for the prediction and control of
transition (3], [4), [5]. Severul different instability mechanisms may be responsnblc for
transmon on the hypersonic vehicle surface, namely

1. the first and secoud modes which are dominant in 2-D or quasi 2-D boundary layers on
a flat plate, axisymmetric bodies, wings, etc

2. Gortler vortices which can play a major role on concave surfaces.

3. cross flow instability which can be dominant in 3-D boundary layers on the leading
edge of a swept wing, axisymmetric bodies at the angle of attack, erc.

Our analysis addresses the mechanism in Item (1). Its relation to other tjpcs of instability
will be discussed at the end of this chapter.

The first mode is an extension to high spceds of the Tollmien-Schlichting waves. They
represent viscous instability at low Mach numbers. However the inviscid nature of the
first mode begins to dominate when the Mach number increases, since the compressible
boundary layer profiles contain a generalized inflection point {3]. This mode may be
stabilized by wall cooling, suction and favorable pressure gradient.

The second mode is the result of an inviscid instability present due to a region of
supersonic mean flow relative to the disturbance phase velocity. It belongs to the family
of trapped acoustic modes. For an insulated surface, these higher modes appear for Mach
numbers M >22. However, it is not until the Mach number is of the order of 4 or
greater that the second mode is st low cnough frequency to have experimental
consequences. Once the second mode sets in, it becomes the dominant instability since its
growth rate tends 1o exceed that of the first mode. For insuluted surfaces, this occurs for
"M >4, For cooled surfaces, the second mode can dominate at even lower Mach
numbers. In contrast to the first mode, the higher subsonic modes are destabilized by
cooling. The existence of the second modes was estahlished by the experiments of
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'Kendall {6), Demetriades [7], and Stetson et al. [8] [10). The most amplified second
~ mode wavelengths tend to be approximately twice the boundary layer thickness, and the

~ second mode phase velocities tend to be apprommately equal to the edge velocity of mean :

"~ flow.

The second mode induces pressure disturbances of very high frequency. For example, the
most. amplified waves observed in the experiment of Stetson et al. [8] at Mach 8
correspond to a frequency of about 100 kHz. TPS porous surfaces can absorb these high
frequency fluctuations. It is assumed that the absorption can cause stabilization of the
second and higher modes by this energy extraction mechanism. This assumption has
been examined in a theoretical study that is summarized in what follows. The eigenvalue
problem for inviscid disturbances in a supersonic boundary layer is formulated in Section
2.2." The WKB method is used to specify the boundary condition on the semi-transparent
wall for the acoustic normal modes of high frequency mcludmg the second mode. In
Section 2.3, the eigenvalue problem is solved numerically and it is shown that absorption
stabilizes the second mode. A discussion of the future effort concludes this chapter.

2.2 Elgenvalue problem for Inviscid disturbances

. A supersonic boundary-layer. flow over a flat plate or sharp cone schematically shown in -

Fig. 1'is considered. The coordinates X, y are made nondimensionless using the

boundary laycr displacement thickness O . In the locally parallel approximation, the -
pp

‘mean flow is characterized by the proﬁle of X -component velocity U(y) and
tempcrature T(y) nondimensionalized using their corresponding reference quantities U,

~and T, at _the upper boundary layer edge. 'Ihe inviscid stability equations are obtained

from the linearized, parallel flow, viscous equations for a perfect gas with constant
‘specific heat by setting all viscous and heat-conduction terms equal to zero [11). Since
the second, third and higher modes have maximum growth rate in the two-dimensional
"case’, we consider 2-D disturbances in normal-mode form as

(@.9.5.87 (5,0 =[wv.p 0 Dexplia-ar) &)

where U and V are the velocity components in the X and Y directions, P is the

pressure normalized by the dynamic pressure, P ,U ,2 ) 0 is the tcmperat&rc_, Q is the
wavenumber, and @) is frequency. -

* This work and a portion of that described in the other chapters was pamally funded by other
sources in addition to the contract.

- This is also termed the most dangerous case.
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UE) p -
k sonic line: U(y,) = ¢ - a(y,)

Vi

Fig. 1 Acoustic mode in a supersonic boundary layer on semi-transparent wall.

bA

Thc system of equations for v(y) and p(y) ( see for example {11]) is

, U | T-M*U-c)?
Vv = U-cv+-la U—'C
()
'=—ix -U—:ﬁ)v
p T

where ¢ =@/ is the phase speed, and prime denotes the derivative with respect to y.
The boundary conditions for Eqs. (2) are

%0) = A- p(0) ®
p(=)=0 | @

Equation (3) is a general form (Darcy’s Law) of the inviscid boundary condition on
porous or compliant walls. The coefficient A is a complex guantity which depends on
properties of the wall material, mean flow characteristics on the wall surface, and flow
perturbation parameters such as a wave frequency and wavelength. Note that the

. boundary condition (4) requires the normal mode to vanish outside the boundary layer.

The eigenvalue problem (2)-(4) provides the dispersion relation F(a,w)=0. For
temporal stability, the wavenumber O is real, and w(a) is the complex eigenvalue. If
Im(®) > 0, then the disturbance is unstable.

The system of equations (2) can be reduced to one equation for the pressure amplitude

2-3
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with the following boundary conditions

oy 4.5 |
p0)=A O p(0) ©)

p(=)=0 o)

Ac:ordi.ng to the asymptotic analysis [12] characteristics of the second, third and higher
modes can be obtained by the WKB method. Without going into details, we bricfly
describe the results of this analysis. For a subsonic disturbance with phase speed

‘l.“;?<R.°(C) <‘1+-;7 | (8)

the boundary layer behaves as an acoustic waveguide schematically shown in Fig. 1. In
the waveguide region between the wall and the sonic line:
y=,,U(y,) = Re(c)=a(y,), the pressure amplitude p(y) oscillates in the y direction.
Here the real part of the function A(y) is large and positive, and hence the solution of Eq.
(5) can be expressed in the following WKB form

(7 y
P(y) =[i’,(y)expk-if }+ 2 (Y)exp[i | My)}* oEe) @
0

]

R - U-c . M*U - ¢)? ,
= Const, , ——q "%, g = ———e |
P2 (y) = Const,, T 9.9 T |

where & =1/max(|A|) is a small parameter. The first and second terms respectively

represent incident and reflected acoustic waves to the wall. Near the sonic line, the

acoustic ray turns around us schematically shown in Fig. 1. In the upper region y> y, ,

the real part of M ¥) is negative and the pressure amplitude decays exponentially. For the

neutral modes, the dispersion relation obtained by the WKB method has the following
form for the case of a non-transparent wall (A=0)
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I\[w—azdyzz.’-n.n (10)
o T 4 ‘

“The solution of Eq. ( 10), (a) corresponds to the second mode for n 0 to the
‘third mode at n = 1 etc.

To obtain the explicit form of the coefficient A on a semi-transparent wall, we use the
WKB approximation (9). The reflection coefficient T is defined as

_5h©

~— Y
5,(0) (b

If T =1, then disturbances are completely reflected by the wall. If T <1, then some
portion of the disturbance energy is absorbed by the wall material. Dxffcrcnuatmg the
expression (9) we obtain in the first order approximation

P'(0) = =iA(0)-[5,(0) - $,(0)] | 0y

Substituting (12) iﬁto the boundary éondition (6) and using Egs. (9), (11), we get

1=
PO = -iAO)P(O) T ~ )

From Egs. (6), (13) we obtain the explicit form for the absorption coefficient

A=~

s 1 .
T©) IM?c _414 a4

c WITO) i+t

2.3 Results and discussion

The eigenvalue problem (2)-(4) is solved by numerical integration using the method of
Mack [11]. The absorption coefficient A is specified by the expression (14). The
integration starts at the upper freestream and continues to the wall along an indented
contour in the complex plane. The contour lies below the critical point y,:U(y,) =c.

The eigenvalue (@) is found by the iterative Newton method.

2-5
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In Fig. 2, the second-mode growth rate Im(w) is shown as a function of the wavenumber
O, at various values.of the reflection coefficient 7 . Calculations were performed for the
flat-plate boundary layer on a cool wall with a temperature ratio typical of a hypersonic
vehicle surface. Here, T, is the surface temperature, and7,, is the temperature
ratio T, /T, = 0.2 0n an adiabatic wall. The freestream parameters have the following
values: Mach number M =6, specific heat ratio ¥y = 14, and Prandtl number Pr=0.72.
It is seen that the semi-transparent wall reduces the growth rate by the factor of 4 at the
reflection coefficient 7=06. A similar stabilization effect has been obtained for other .
Mach numbers, and wall temperatures. Since the physics of the third and higher modes is
simijar to that of the second mode, it is assumed that the absorption of acoustic energy
can cause similar stabilization of these higher modes.

004 prmspem e T b

mdngmm

[] PUN BN | PN U ST U NN WA E S
11 12 1.3 1.4 1.8 14 1.7 14
: ’ a

Fig. 2 Effect of the wall reflection coefficient T on the second mode growth rate

Im(@) for hypersonic boundary layer at M =6, T, /T, =0.1986, Pr=072,
and y=14. L

2.4 Conclusions

1. According to inviscid stability theory, the absorption of acoustic energy by a semi-
transparent wall can essentially stabilize the second mode of a hypersonic boundary
layer. This stabilization may lcad to delay of transition on hypersonic vehicle surfaces.

2. Since frequency of pressure disturbances incident on the wall by the second mode are
very high (of the order of 100 kHz), TPS porous materials used on hypersonic vehicle
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- surfaces can be semi-transparent with respect to these disturbances. It is this property

that provides an opportunity to use absorption to maintain or increase the laminar flow
run.

Since the boundary layer stabilization is due to the absorption of disturbance energy by

_the wall, we believe that a similar effect may occur for other high-frequency instabilitics
such as unsteady cross flow vortices. A semi-transparent wall may also affect transition
past TPS roughness elements. It is recommended that these assumptions be verified by
wind tunnel experiments using models with porous surfaces.

In our analysis, we have used a simple model for the boundary condition on a semi-

transparent wall. This model permits rough estimates of the absorption effect and

formulations for its experimental verification. For reliable quantitative results, more

comprehensive models of the absorption mechanism as well as detailed experimental

studies are required. In order to demonstrate the effect of transition delay on a semi-

transparent surface and apply it to hypersonic vehicle design, the following effort should
be performcd

e Test current TPS materials and obtain their transparency characteristics in a frequency
band relevant to hypersonic instability

o Demonstrate the effect of surface transparcncy on transition by experiment on models
of a simple shape (such as a flat plate or sharp cone) in hypersonic wind tunnels

e If the demonstration is successful:

~ Develop theoretical models accounting for viscous effects as well as physics of
interaction between the flow disturbance and the TPS material microstructure.
- Conduct detailed experiments in hypersonic wind tunnels.
- Perform flight testing.
~ Develop new TPS materials provndmg maximum stabilization of hypersonic
~ boundary layer and transition delay.
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‘3. Reflectional Instability of a Hypersonic Boundary Layer

3.1 Introduction

The hypersonic speed range contains some of the most important problems in boundary
layer transition. At high Mach numbers, early transition causes temperatures high enough
to destroy air vehicle surfaces. Uncertainty in the transition locus leads to diminished
performance, primarily because of the additional weight of the thermal protection system.
This has stimulated considerable experimental and theoretical studies. The transition
problem is an initial boundary value problem which requires the identification of the
freestream disturbance field, understanding of the laminar flow receptivity to external
disturbances including surface irregularities, as well as linear and nonlinear amplification
of unstable disturbances [1]. Current knowledge is inadequate to solve and apply the
initial value problem to design, even at low speeds. However, it has been found that
transition can be correlated with linear stability theory if the external-disturbances are
relatively small. This motivates development of hypersonic flow stability theory.

Hypersonic instability is more complicated than for moderate specds. In addition to .
Tollmien-Schlichting waves, cross flow and Gortler vortices, the following special
observations apply at high Mach numbers:

o In the region of the boundary layer that is supersonic relative to the phasc velocity,
Mack [2] showed that multiple solutions of the inviscid stability equations occur.
These additional solutions are called higher modes. Physically they represent acoustic
modes which propagate in a “waveguide™ located between the wall and the sonic line.
The first mode of this family, which is called the second mode, is the most unstable.
Its wavelength is of the order of boundary layer thickness.

e Fedorov and Khokhlov [3] demonstrated that the second mode instability is related to
synchronization between the first and second modes. Near the synchronism point,
where frequencies and phase speeds of both modes coincide, the eigenvalues split into
two branches. In the vicinity of branch points the dispersion relation is singular,
causing a strong exchange between modes due to nonparallellism. This implies that a
multi-mode approach is required for transition prediction rather than the conventional
single mode method.

e If the shock wave is close to the surfuce, which is relevant to the windward side of re-
entry vehicle at the high angle of attack, a new class of unstable modes occurs due to
reflection of disturbances by the shock. Qualitative asymptotic analyses of Fedorov
and Gushchin (4], [5] showed that, in addition to the lower waveguide of the boundary
layer, there is an upper waveguide located between the shock wave and the sonic line.
At certain conditions acoustic waves of the lower waveguide are in resonance with
those of the upper waveguide and have identical phase speeds. The synchronization
between modes causes a new type of instability.
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¢ In the hypersonic limit, the inflectional instability is related to a thin transitional layer
located near the upper boundary layer edge. This inviscid instability is called the

* vorticity mode. It has been studied by Blackaby, Cowley and Hall [6], Smith and
Brown (7], Grubin and Trigub [8] using asymptotic methods. They analyzed stability
of the hypersonic flow over a flat plate for weak and strong viscous-inviscid
interaction. It has been found that the vorticity mode weakly disturbs the flow outside
the transitional layer which separates a hot flow of the boundary layer from-a cool

inviscid flow. The phase speed of the vorticity mode tends to unity with increasing '

Mach number. Its wavelength is much less than the boundary layer.thickness.

e Malmuth [9] studied disturbance flowfield in a thin shock layer betwccn the' shock.
wave and the upper boundary layer edge. He examined the strong interaction regime -
on a flat plate at the Newtonian limit when the specific heat ratio ¥ = 1. His studies

show that disturbances of longitudinal scale of the order of the length of the strong
interaction region can strongly amplify in a thin shock layer. This new instability does
not relate to the normal-mode decomposition normally used in stability theory. It was
revealed only by solving the complete initial boundary value problem for strongly
nonparallel flow.

o Hypersonic flow past a blunt body generates a strong curved shock near the nose. This
causes an entropy layer in the inviscid region between the shock and the boundary
layer. As the shock wave approaches the limit of a sharp cone solution, the entropy
layer thickness decreases and eventually it is swallowed by the boundary layer. The
entropy layer can be unstable due to presence of the inflection point (5], [10].
Reshotko and Khan {10] found that within the swallowing region, the boundary layer
stability is affected by the nonuniform flow ncar the boundary layer edge. The .
interplay between the entropy modes and the boundary modes may st:ongly affect their .
amplification.

Coexistence of several instabilities of essentially different scale make it difficult to
predict transition from a universal stability code. Computations of the hypersonic mean
flow and its stability from codes developed for moderate Mach number flows are very
time-consuming. Computational time and intensity grows dramatically with increasing
Mach number because of the strong non-uniformity of hypersonic mean flow profiles and
the high sensitivity of the related cigenvalue problem to its first and second derivatives
[1]. Solution procedures based on combined asymptotics and numerics deal effectively -
with this difficulty since thcy systematically guide accurate resolution of the high
gradient regions in a robust way. This has stimulated the research descritied here.

- Asymptotic models have been developed to treat the short-scale vorticity mode of the
transitional layer in (6] - (8], and large-scale disturbances in [9) of the inviscid shock
layer. Both instabilities convect with a phase speed close to the freestream velocity. The
intermediate case in which the disturbance scale is of the order of boundary layer
thickness and its phase speed is less than the freestream speed has not been studied by
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asymptotic methods. This gap is targeted in the analysis that follows. In Section 3.2, the
- composite system of stability equations for a strong interaction hypersonic boundary layer
is derived. The disturbance field in the inviscid shock layer is treated in Section 3.3. In
Section 3.4, matching between the boundary layer and shock layer is used to establish
boundary conditions at the upper boundary layer edge. The weak interaction case is
considered in Section 3.5. Section 3.6 generalizes consideration of the eigenvalue
problem to 3-D mean flows and fluctuations. In Section 3.7, a self-similar solution for
steady strong interaction boundary layer flow is obtained. ‘l‘hcsc mean flow profiles are
uscd for stability computations in Section.3.8.

3.2 Stabliity equations in the strong interaction boundary layer

Consider the boundary layer on a flat plate in hypersonic flow of a perfect gas (see Fig. 1)
with speed U_, temperature T_, and dcns:ty p.. Introduce nondimensional coordinates
and time as

x.y)=(z .y)/5 1=t 1(8°1U). . m

where 8° is of the order of the boundary layer thickness. The pressure p°, temperature,
density and the velocity components u°,v* are nondimensionalized as

. . T’—. .-e:-’( 5 (u"v.)' 2
/4 _L—pj,v, :P p; i,v) = *—-—U: (2)

- Besides the fast variable x, a slow variable x, corresponding 1o the longitudinal scals L’
(sec Fig. 1) is introduced , where

x,=6-x.5=%. 3)

Consider the following hypersonic limit corresponding to the strong interaction between
inviscid flow and boundary layer (see for example Bush [11])

8> O0,M = w0, 5 M? = o0 (y=1) = (1), = )

where ¥ is the specific heat ratio. In this case, the shock-layer thickness &, is of the
order of the boundary layer thickness §°.
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shock wave 3= y?

Fig. 1 Hypersonic stf'ong intéractidn flow over a flat plate.

The mean flow and its unsteady perturbations are represented asymptotically as

- ﬁ(k,y,i) =52[?1(-‘1)""5"P(X-xhyyf)]+"'
‘5(-‘-3'-‘)'—'";!:']’5’[;7,(.?,.)')+€-p(x.x;,y,1)]+m

Fx,y.0 =y - DMP[T, (2, ) + £ T(x, 5, 3,00 ]+ -+ -
ﬁ(X.y.t)==U,(x,,y)+e~u(x,x,,y,:)‘+... , (5)‘
V(X y,8) = 8-V,(x,,7) + £ v(x,x,, 3, ) + -

-~ > il d
=1 =[(r-nm’] [ﬂ.(x,.y)-#e'd—‘;"T(x,-)'J)]’f' :
=T (%)

In (5),€ is a small parameter characterizing the disturbance amplitude, fi= '/ is the
normalized viscosity and the temperature-viscosity dependence is approximated by the
power law with the exponent n. With the exception of the vertical velacity v, these
expansions resembie those of Bush [11] for steady flow. Since the disturbance scale is of -

the order of boundary layer thickness, the pressure perturbation is not constant across the
layer and induces the vemcal vclocxly perturbation v = O(l).

Substitution of (5) into Navier-Stokes equations and linearization gives a hncar systcm
In particular, the continuity equation yields

P, M P N

a‘+p,&+v,&+p,ay+v &y o
0,2 ey ey 2,2

*‘("&.* FOR R A "l v b




From the x-momentum equation

I AN S R T
p:[a’ Ulax ay) +5[plula+ ax+

u, . M v, W 19( &
”(“"*"'ay] (” "T*V’aTJ]'Ray(“'ay)*

1 o 2
RG’ +0(R)+0(5 ).

The y-momentum equation gives

FEHRies

In (9), tbe similarily parameter R is

R= & U-p- 61[7-1\ i

>y Jfa-om

He
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M

(8)

9

(10)

The quantities G,, G,, and G, arc viscous dissipation terms that can be neglected
everywhere in the boundary layer. Viscous terms proportional to the highest y-derivative

are included in (7) and (9), since they are dominant in viscous sublayers as will be shown
below. Terms proportional to § describe nonparalicl effects associated with downstream
boundary layer growth, The small parameter § can be expressed as (see Bush [11])

6,[1; 1_[(7-254’]' ]W'Re_ el
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From (10) and (11) |

 R=Re- 5L !
71[71Mr

'Substitution of (11) into (12) gives§ =1/ R and the result that the sxmxlamy paramcter
" R = oo for the strong interaction case.

(12)

For stability considcrations. the disturbance characteristics are represented in the normal
~ mode form

q(x.x, 1.8) =[qy(x,, ) +6 - q, (j"x It .]exp[é-ja(x! )#‘ - :’ox] 13)

Modes with phase speed ¢ = fx satisfying the condition Re(c)<1 will be considered.
If ¢—1, the disturbance is concentrated in the transitional layer located near the

boundary layer edge. This case has been studied in [6] - [8]. Substitution of (13) into (6) -
~ (9) gives the following system of stability equations to the first order approxlmatnon with

respect tod
iaU, a))p.,+p oy, P : - (14)
(] A, (4 @
p,[:(aU ~ )iy +v°'7gy ]-Hay ! Qv(“’ %;1) - (15)
y=~1dp, |
ip(alU,~® ~—'—'9-=0 : ' 16
p,(@U, ~ @), + > (16)

dT, - : 1 dT.
. p‘[l(aU, -—a))_T:, + v,-s;-]-ir}—‘-(au, -W)p, = ﬁ%{”’ ‘5‘;‘)- (17

Since the mean-flow pressurc is constant across the boundary layer, it is convenient (o
normalize the pressure to 5, so that the equation of state can be expressed as

1o el | (18)
Usingdu:notatidm _
f.-u,.¢=%.ﬂ=‘%".9=7;. o - (19)

we get (he following systcm of stability cqumons in the form convenieat for numerical
integration
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. T ‘ , 1.7~
Lasmagliv,-dreviel+iton (20
i =iy, - )(.T".-,).,.;Zq, | 21
i X e |
n'= 17_17;.(0, c)p | (22)
B g T N eily -
oon? —1;¢+(y o' +if) +i(v, C)T,' ‘(23)

where prime denotes the y-derivative. This system is a hypersonic analog of the Dunn-

Lin systern for the supersonic boundary layer. Derivation of (20)-(23) is based on an
asymptotic analysis similar to that conducted by Cheng [12], and Alekseev [13] for
moderate speeds. The asymptotic structure of disturbances across thc boundary laycr is
schematically shown in Fig. 2 for 0<Re(c)< 1.

inviscid shock layer

| Soundary layer edge yvy,
inviscid zone 2
critical layer I

'tnvh:idzom 2

- viscous sublayer

Fig.2 Asymptotic structure of the disturbance field.
The following observations are relevant:

1. In Zones 1 and 2 with the thickness O(1), viscous terms are negligible, and the system
(20)-(23) is reduced to the inviscid stability equations.

2. In a viscous sublayer of thickness & = = (aR)™?, viscous terms from (20) and (23) are

of the order of inviscid terms. Here, the solution is expanded in a power series of small
parameterd.
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3. In the critical layer of thickness &, = (aR)™, viscous terms are also of the order of
inviscid terms. This layer is located near the critical point y,: U(y,) c. Hcrc, the
solution is expanded in a power series of§ , . :

4. In the inviscid shock layer located outside the boundary layer, viscous terms are
negligible and the system (14)-(17) is reduced to the inviscid stability equatxons

Instead of solving stability equations in each sublayer and performmg matching betwccn

- asymptotic solutions, we can solve the system (20)-(23) numerically keeping the viscous

terms with the highest y-derivative throughout the entire region of integration. This

allows us to obtain a composite solution which is uniformly valid in all decks. A similar
approach has been applied by Mack (2], Gaponov and Maslov [14], Tumin and Fedorov
[15], and others to stability analysis of supersonic flows. Note that the system (20)-(23)
can be directly derived from the Dunn-Lin system by applying the hypersomc limit and
using the asymptotics (5).

Summarizing, we conclude that the disturbance structure and stability cquations in the
hypersonic boundary layer are qualitatively similar to those for supersonic flow.
However, the behavior of the disturbance amplitude near the upper boundary layer edge
and within the inviscid shock layer is essentially different from the moderate speed case.
The mean flow temperature tends to zero at the upper boundary layer edge, which
separates the hot flow in the boundary layer from the cool flow in the shock layer. As

will be shown below, the large difference between temperatures of these flows strongly ‘
affects boundary conditions for the disturbance amphtude

3.3 Disturbances In the inviscid shock layer

Consider the inviscid flow between the shock wave and thc upper boundary Iayer edge
(see Fig. 1). We specify nondimensional variables of inviscid flow as

W)=V L =C LUy

P 2 T . p (') o

p p_U 2 'T‘ T p p.: ,(u,V)- U‘. (25)
The shock-wave shape’ is defined as

y, =8-§(x,1).8=0() ‘ - (26)

* Subscript s is used interchangeably herein to denote shock quantity or (stcady) mean ﬂow This distinction
should be obviated by the uscage context. :
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The inviscid flow in the shock layer is described by the system of equations

dp i o _o
a0 @
5 %—‘-w%—w%}%:o - (28)
1 i i 1
AN
[ a:,*“a:,*"a,,)* l-O _ (29)
f9 .3 .9)._ .
p[5§+“9x, *”ay, )S-O . (30)
=;’3,- @31)

where § is the entropy functiofx'.

The boundary conditions at the shock wave are

@(x,, 3, .0) = 1-7%352(25)2 : (32)
35 yh) =~;2:;5D,§ @
PCxpu 1) = 73;,5%0,3)’ | (34
Blxyo oty = %—E—i | | (35)
Du -ﬁ-'w% ’ (36)

We assume that the shock wave has the shape
E§=go(x))+€-6-g,(x.1), 37

‘where x=x, 5,and t = t, /6 are fast variables of the disturbance flowfield. Using these,
the boundary conditions (32)-(35) arc written as

. 2

“=]"m62[g°": +2¢€g,, Dg,+...] (38)
S

v=—y+16[g°“ +¢&Dg,+...] (39)
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40)

@n

In addition, we introduce the shock layer variable y=y,/ 8, and the fast variable
Y= 0 /8% . The boundary conditions ( 38) - (41) and the structure of (27)-(30) dictate

the following scaling for the mean flow and disturbance characteristics

d= 1482w, (x,,y) + &, (x,, 5,5, 5, D1+
= 8[v,(x,,3) + v, {x,, 3, %, ¥3,1)] + -+
p=8%1p,(x.0)+ (%, 35y, )] + -
P=p,(x,Y)+Ep (X Y X, ypul) + e a

(42)
(43)
“44)
(45)

Substituting (42)-(45) into (37)-(31)‘and linearizing gives the following system of

equations for the disturbance flowfield
. s N
Dpl +V,(X,,)f),3;,‘: + p‘(x“y)j-b—;— =0
)
p. (X, W(Du. + v,,(xl.y)gyl)f 2t=0
ps(xl’y)(DVI +v (x,,y)—--) 3,! 0
| 2

DS, +v, (x,.y)

- 3,9:
P 2]
s,=f_y B
=5 7o,

)
@
@)

49)

(50)

In the first order approximation, the boundary conditions (38) - (41) at y = g,(x,) are

—“l "“_“gox,Dgl -

y+1

2
Vl:;':']'Dgx
b =280..V1
p =0

3-10
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These conditions have been shifted to the undisturbed shock using the following
expansions for the steady flow profiles '

‘ oF
F(y,)= F,(go)+853;-(go)g, '

where F signifies a flow dependent variable.

Since the coefficients appcuring‘ in (46)-(49) are functions of slow variables only, we can
apply the WKB method. Accordingly, a solution is represented in the form ‘

4 =1g10(x,y) + &ll(xlvy)"’«--]‘e"p(éij "'}‘dy"'i‘“)

In the first order approximation with respect to the small parameter$, the system of
equations for pressure and vertical velocity are

%[i(a— )+ i/lv,]fpi"- +iAv,, =0 ‘ E o (54)
-%-[i(a—m)-t-i/lv,]vw +i3.%2=0 o | (55)
=2, I 66

Equations (47), and (50) for the entropy function S, and longitudinal velocity #, can be
found separately using solutions of (54) and (55). At some point (x,,y), the system (54)-
(56) has a non-trivial solution if the wave numbers satisfy the dispersion relation

7 --J—.-((a-w) +4v,Y =0, ' (5T)

which gives
' a-o
=F=
ha =3

Accordingly, the general solution is

P = p,{c. 'cxp[;;-il.dy)*r G 'CXP[;% J &dy)] . (58)

Vo™ [C __Ea__exp[% { A,dy] +C, ;%)%-)—.,7, cxp[—ig { A,dyﬂ

‘a-w+Ay,
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where y, corresponds to the upper b'oundary layer edge. The constants C,, and C, must

be found from the boundary condition (53) and matching with the boundary layer
solution. '

3.4 Matching

In the inviscid zone 2 of the boundary layer (see Fig. 1), the system of equations (20)-

(23) can be reduced to the inviscid equations for the pressure T, and the vertical vclocxty '
a‘ﬂ

,_ Ul U, -e) ~(y-DT,

o -U __cgoq-i ) =0 ) (5?)
2)’(0 c) ‘ » ' . :
z+a—-——f-——-—(y I)Tq»o . - (60)

Near the upper boundary layeredge U, (y) = 1,and T, 2 0,as y—> y, - 0 the hmmng
form of (59), and (60) is

¢'+i—'-;-°-zr=o | ()
2, 202 Y(I'C) p
' +ic (7_1)2; (62)

The solution of (61), (62) is represented in the WKB form

P a-o ? &-w‘
= Aexp|—i dy) + A cxp(i dy) 63)
‘ p( {7(7- l)T. ,!,7,(7-1)7, .

-7,
o (7)[

t a-w
A _ .
cxp[ Ij 7 1)1' dy) p[z;[ DT d)’]]
where A,, A, are constants. Usihg the dcﬁnition | , i

= T :
T= ‘i.— r=-HM’T, (64)

we obtain the following explicit forms for the disturbance amplitude, as y— y, =0
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ﬁw&[&exp[-tf—-;]-—dy)wcxp[ I“—‘/’;-’-’—‘idyﬂ T es)

, = Y ey ‘ 1 (a ~ .
Vo -)—;/"MI—-[A, ex;{-’— i{-(-g—jf—j_‘-f-w-dyJ-A, CXP["{(LJ%)E_@]J' (§6)' ,

Now wé consider the shock léycr solution (58) as y—=»y, +0. Since the mean flow

temperature T tends to mﬁmty. and the mean- ﬂow vertical vclocxty v,=0(1), the
asymptotic form of the solution (58) is ' :

Pw—’P.(Y.)[C\‘CXP( IV?r'dy]+C’ cxv[ ﬁdy]] (67)
Vo = L. C, -c;(p -iyg:—g’rdy)-c -ex _i_j'a-méy] e | (68)
e b7 K W e ]| R

Using the scaling (44), (45), and the definition (56), we obtain the relation

T

Tu =7M262'

Accordingly, the vertical velocity amplitude ¥, = v,, and the pressure amplitude p,, are -
respectively

14 - .
Po = p,(y, [A cxp(—x I -—T-—Jy)+.4 cx{i I .@_T;.)ﬂ.dyn | (69)

ff.-»%,_f-[&exp{ {‘—'f;“i’ﬂdy] Az"‘{f( = ]] . (70)

Comparison of the outer asymptotic limit (65), (66) with the inner limit (69). (70) and
accounting for the relation p,(y,)= P, shows that the pressure and vertical velocity
disturbances match at the upper boundary-layer edge, y =y, .
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On comparison of the boundary-layer flow field representations (5) with the
corresponding shock-layer flow field expressions (42)-(45) and if the disturbance
. charactcristics are normalized in such a way that the pressure amplitude is p = O(1)in the
boundary layer, then: -
L p=0()in thc shock layer.
-2. The tempcrature amplitude T=0(l)in the boundaxy laycr and T=0(8%) in the
shock layer.
3. The longitudinal velocity amplitude i is u= 0(1) in thc boundary layer, and u= 0(62

. in the shock layer.
-4. The vertical velocity amplitude is v = 0(1) in the boundary layer, and v=0(d)in the

shock layer.

Thi‘s statement is schernatically illustrated in Fig. 3.

Fig.3 Orders of magnitude for the amplitudé of the velocity, prcssufe and temperature
- disturbance, (normalized with respect to€ ).

Consequently, , the boundary conditions

up(y,) = f(3,)=0 | |
vo(y,) mag(y,) =0 | | | an
Ty(y,)m6(y,)=0 ' '
holdto 09 ).
On the wall surface the no-slip conditions are -

J(0) = (0) = 6(0) = 0. | ’ 72)
Equations (20)-(23) with the boundary conditions (71), and (72) consititute an eigenvalue

~ problem. To 0@ ), this problem does not depend on the shock-layer flow. According to
_(71) the upper boundary-layer edge separating the hot viscous flow from the cool shock-
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layer flow behaves as a solid wall. In spite of the strong interaction between steady flows
the disturbances with the phasc speed less than unity only weakly interact with each other.
However, the eigenvalue problem implicitly rather than explicitly depends on the type
of interaction, because the stability equations include the steady flow profiles.

3.5 Weak Interaction case

For weak interaction, the inviscid flow parameters tend to their freestream values as
y —>e. Then the representations of the pressure, deasity and temperature in the

boundary layer are [16)

. L ip,
P(L)’J) =WT[”:(‘|)+5'P(x»xny,f)]+’”

f(x,y.1) = (%,,3) + £ p(x, %, y.1) |+ (73)

___‘_._[
(7 - l)MZ pl
T(x, .0 = (7 - DM[T,(x,. ) + € T(xx, 7.0 -

From an analysis similar to the strong interaction case, we find that the stability equations
coincide with (20)-(23), if the similarity parameter is defined as

_SUlpl 1
T (C2)) 75

R (718)

From the expression for the boundary layer displacement thickness [ 16]

2! .
& =[(y-)m]’? 71%7' 75)

the explicit form of the small (interaction) parameter is

4]
(y-1)m?]? |
‘[—,ra-E )

From (74)-(76) we obtain the relation § =1/ R, which is similar to the strong interaction
case. To O ), the boundary conditions for the disturbance at the upper boundary layer

edge are given by (71). Similar to the strong interaction case, the upper boundary layer
edge separates a cool free stream from a hot flow in the boundary layer, and behaves as a
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solid wall reflecting the boundary layer disturbance. The eigenvalue problem (20)-(23)
‘with boundary conditions (71), (72) is valid for the weak interaction case, if we
-simply replace the mean flow profiles by new ones. Consequently we can study the
boundary-layer stability with respect to disturbances of phase speed ¢ <1 for strong,
weak, and moderate interaction regimes using the same algorithm.

3.6 Three-dimbnslonal case

The forégoing analysis has been extended to the case of 3-D disturbances in a 3-D
hypersonic boundary layer. Here, the disturbance is represented in the normal mode form

4(x. 3. 2.0) = ¢o (%, -y)'cxp[;;‘f a(x,)dx, +ifz - iat]- -

where z is the lateral (spanwise) coordinate.

For this casc; the 3-D system of stability equations is reduced to a 2-D system by the
following transformation of the mean-flow and disturbance characteristics

k2=a2+p2'ua=g_u.l_ktﬂl.'7;‘=z . | : | . 79

=L 1 Bwro=2 =2
f“k(w‘o+ﬁwo)-¢° k.'c_ k’

where W,, andw, are the mean ‘valuc' and the disturbance amplitude of z-velocity
component respectively. ’

Equations (20)-(23), and the boundary conditions (71), (72) take the form j

%f”:-i!:[i(uu-c)f+ug¢]+i%13 | o (79)
o' +if =ilU, ~c %-n]«&%l | (80)
%= —1;1_—1%(0,, o  a
Pconx By o'+ ) +lU, - ®
f©=p0)=60)=0 - )
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fy,)=0(y)=6(y,)=0 ' (84)

Note that this system may be used to study cross flow instability at hypersonic speeds. In
contrast to the full Navier-Stokes stability equations, the system (79)-(82) does not
contain second derivatives of the mean-flow profiles. This saves cornputational time in
otherwise time-consuming and intense calculations of the basic flow distributions.

3.7 Interactive steady flow

Strong interaction mean flow profiles forl,and 7, can be obtained using a self-similar
solution of the boundary layer equations (see for example [11], and [17]). We consider
the boundary layer on a flat plate with constant surface temperature. For brevity we
assume that the exponent of the viscosity-temperature law is n=1. On introduction of
the similarity variables

P j"dy

n=s———57 —1-_- ‘ .(85)
(2} }:dx,] 9%
0
1 : :
U,(m)y=F'(n),H,(m) =-2'G('7) (86)
! . : ‘

Lm=5(G-F"), 8D

thc‘ boundary layer equations become
T w Y 1 2 |
F” +FF +-T(G-F )=0 (88)
| ’ ’ Pr-1 ol . ‘

(ﬁo)’wc +2(—Pr FF) =0 (89)

F(0) = F’(0) =0, G(0)=G, (90)

F'(e) =1,G(0) = 1. o 9n
For strong interaction, the pressurc is

P(x) = By, | ©2)
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where the constant B, is obtained from the interaction law. With the Tangent-Wedge
approximation’, this constant is (17

B, = -:-A‘ fi’%ﬂl’l,z& =TO)[Tmdn. ©3)
Y ° :

The system of equations (88)-(91) was integrated using a fourth order-accurate Runge-
Kutta method. Distributions of the velocity U, (1), and temperature T'(1) are shown in
Fig. 4. The calculations were performed for an adiabatic wall; the specific heat ratio
isy =14, and the Prandtl number is Pr=072. Integrating the temperature profile, we
obtain from Eq. (93) that A = 14€3. ‘ . :

| n 5o
| 4.0
3.0

2.0

1.0

0.0 'r""l'll"l"ll'lrr[l'l’Vl'lll""'f'll’]’l"l’ll"I

0.0 0.2 0.4 06 - 08 1.0

Fig. 4  Self-similar profiles for velocity, U, () and temperature, T,(1) in a hypersonic
boundary Jayer on an adiabatic flat plate; Y=14,Pr=072,n=1. -

* More ssymptotically consistent valucs for this constant can be obtained l'onﬁ Hypersonic Small
Disturbance Theory. Numerical solutions can give other estimates, However, neither will change the
esscntial stability behaviors discussed hers.
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3.8 Stabllity computations and results

To obtain the results to be discussed, the eigenvalue problem (79)-(84) was solved
_numerically using the strong interaction mean flow profiles (86), (87). The system of
stability equations is transformed into the form convenient for integration

| -d—n=A(k.a),U,,1;.R)Z : (93)

Z,(0)=Z,(0)=2,(0)=0
Z ()= Z,(o0) = Z,(00) =0

where Z(n) =(f,f’,9.,7%,6,8) is the eigenvector. According to the definition (85) of
7, the similarity parameter , frequency and wavenumber are rescaled as

R=TR&=Tw.k=Tk 94)
12 ' : '
r= -};(2} P,dt,) =28, x4, (95)
s [ '

Founh order-accurate Runge-Kutta integration of the boundary problem (93) was
performed uqmg an the orthogonalization technique. For the spatial stability problem, the
" eigenvalue k(@) is searched at fixed real frequency @ by the Newton iteration method.

- Unstable regime corresponds to Im(k) <0.

Calculations were performed for 2-D eigenmodes withf =0 and the phase speed
Re(c) <1. The mean flow corresponds to the adiabatic case for specific heat ratio
y=14, and Prandtl number Pr=072 (sec Section 3.7). The exponent of the

" temperature-viscosity law is n=1. '

In Fig. 8, distributions of Re(k) are shown as a function of the fréqucncy @ for
Reynolds number K =2795. It is seen that spectrum contains two families of normal
modes denumerated as 1,2,..., and 1°2’,.... At the intersection points,
Re(k,)=Re(k,), the phase speeds of two modes coincide implying their
syachronization. This pattern is qualititatively similar to those obtained by Fedorov and
Gushchin [4], [5] from the inviscid stability analysis of the short-scale disturbances in a
shock layer. According to this model, the family 1, 2, ... in Fig. § corresponds to the upper
waveguide located between the boundary layer edge and the second turning point
¥3:U,(y,1) = Re(c) +a(y,;), where a(y)=/(y -~ 1)T,(y) is the normalized local sonic
speed. The family 1’,2’,...corresponds to the lower waveguide located between the wall
and the first tuming point y,:U,(y,)=Re(c)=a(y,). Thc disturbance pattern js
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schcmaucally shown in an 6 for the short-wave limit. Large number modes behavc as
_acoustic waves with small dampmg due to viscous dlsmpauon

E@)so

Ak A

- . N
. o
PO SR U SN VK WU WOE T S0 WOV IO S N Y |
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O BLALAD Bn A Sn S0 Rtk b S i S o G S B SN I S0 S S Rt N S A 20 M) S BB A e M S S SN 2t M :

o 5 10

Fig. 5 Distributions ReE_(@) for the lower waveguide modes m= 1'2,..., and for the
upper waveguide modes m=1,2,...; R =2795. o

]

n <<

b —— 1~

Fig. 6 Schematic pattern of dismrbance flowfield in the boundary Inyer

Near synchronum points however, the upper waveguide wave interncts with the
comspondmg lower-waveguide wave through the quict zone depicted in Fig. 6. In
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accordance with asymptotic model [4], [5], this interaction causcs a splitting of the
dispersion curves k(@) that can lead to instability. L

o 0016

]
]

0014 4
]
]

0.012 4

0.010 1
1
]
b

0.008 Jrrrrrrr vy rrrrr—rrrr—r—
6 6.5 70 75 D

Fig. 7 The growth rate & = -Imk,(@) for the mode 1 in the vicinity of the synchronism
point 1-1°; R =2795.

As an example, Fig. 7 shows a spike of the growth rate o =~Imk,(@) near the
synchronism point 1~1’. For this case, the cigenfunction of the unstable mode 1 is
shown in Figures 8a-8c. It is seen that the pressure waves are excited in both waveguides
and interact with each other through the quiet zone.

The temperature distribution clearly indicates the presence of critical and viscous
sublayers (sce Fig. 8c). In accordance with qualitative pattern of disturbance structure
shown in Fig. 2, viscous sublayers are scparated by a relatively thick inviscid zone. In the
critical layer, viscous effects cause strong lemperature perturbations and very high
gradients. The velocity and temperature amplitudes quickly vanish as 1] — e, whereas
the pressure disturbance is of the order of O(1)at the upper boundary layer edge. This
feature Jooks more graphic and realistic if the physical coordinate y is used instead of the
coordinate 7] which is highly stretched near the boundary layer edge.

321




SC71062.FTR

77 5.0

4.0

T tsas mmn  ame  wee @

3.0

et st tta s bengrpra et teaa e st arenpa s itian e

20 upper waveguide L7
7712 ’
1.0 N
{
n, N
4 lower waveguide \
0.0 LINLINR 2L S 2 N AU NN JL O L B SO A I IR BN N N L Sk AN R B N N O U SN AN N BN I A A NN DN R N NN |
-1.2 -0.8 -0.4 -0.

0.4 T

Fig. 8a Pressurc amplitude #(n) of Moce | at the synchronism point 1-1";
- R =2795.T =691,k =11.03~i.0.015.
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Fig. 8¢ Continued; the temperature 8(7) .
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Fig. 10a Exgenfuncuon of Mode 1 at the frequcncy @ =039, R =2795,
' k =2813~i-002; the pressure m(1).
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Fig. 10b Continued; the vertical velocity v(1).
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Fig. 10c Continued; the longitudinal velocity u(n).
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Fig. 10d Continued; the temperature 6(n) .

For the modes depicted in Fig. 5, the most unstable is Mode 1. Its increment Imk, (@) is
shown in Fig. 9 for the Reynolds number R =2795. It is seen that the growth rate
achieves its maximum at the frequency @ = 0.39. The cormresponding eigenfunctions are
given in Figures 10a - 10d. For this case, the pressure amplitude is relatively large in the
upper waveguide. The lower waveguide does not exist because its upper boundary is
¥n <0. Since the phase speed is small, the critical layer is merged with the wall sublayer
and blends to one deck as clearly seen in Figures 10c, and 10d. We believe that the Mode-
1 instability is due to reflection of the pressure disturbance by the upper boundary layer
edge. For this reason, we refer to this mode as a “reflectional instability.” Distributions of
its wavenumber Rek,(R) and growth ratc o(R) =~Imk,(R) at the frequency & = 039
are shown in Figures 11a and 11b respectively. The reflectional instability has a relatively
small phase speed Re(c) ~0.14, which is typical for acoustic modes. For reference we
recall that the vorticity mode located in the transitional layer has the phase speed
Re(c) = | [6]. From data shown in Figures 9, and 11b we conclude that the reflectional
instability has a relatively high growth rate, of the order of 2.107. Such a strong
instability may achieve the critical amplification neccessary for transition.
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Fig. 11a Reflectional instability wavenumber Rek,(R) at frequency @ = 0.39.
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Fig. 11b Reflectiona! instability growth rate 0(R) = ~Imk,(R) at frequency @ =0.39.
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Since the eigenvalue problem (79) - (84) is isolated from the outer shbck layer, we can
assume that similar mechanism of the reflectional instability exists in hypersonic .
boundary layers at the modcratc and weak interaction. Analysm of these cases is in -

progress.

3.9 Discussion

We have investigated the instability of the flat-plate hypersonic boundary layer to the - -
normal modes with wavelength of the order of boundary layer thickness and phase speed
less than 1. These modes are associated with acoustic waveguides located in the boundary
layer. Asymptotic analysis showed that in the first order approximation with respect to the
small parameterd, the upper boundary layer edge behaves as a solid wall which reflects
the boundary-layer disturbance. In spite of strong interaction between the steady shock
and boundary layer mean flows, the unsteady disturbances under consideration only
weakly interact with each other. From asymptotic analysis for the weak interaction case
we have found that the eigenvalue problem has the same form for both weak and strong
interaction. This allows us to study the boundary layer stability for the strong, moderate
and weak interaction regimes using a single approach. The eigenvalue problem is easily
extended to the 3-D case and can be used for analysis of the cross ﬂow instability in three
dimensional hypersonic boundary layers.

From our eigenvalue problcm solution for lhc strong interaction case, we conclude that

~ the reflection of disturbance by the upper boundary layer edge leads to instability of the

upper-waveguide modes. We refer to this mechanism as the reflectional instability.
Similar waveguide mechanisms have been ascribed to the dramatic effect of thinning the
shock layer fory —» 1in [9]. There, thinning produccs downstream amplification of
otherwise long wavelength fluctuations that decay downstream for thicker shock layers.

Calculations have shown that the reflectional-instability mode has a relatively small phase
speed ¢ =0.14. This is consistent with recent experiments of Maslov and his group.
performed on a flat plate in hypersonic wind tunnel at Mach 20 (private communication).
They observed slow waves propagating in the strong and moderate interaction region with
a phase speed of the order of 0.2, and growing downstream. Since the reflectional-
instability mode has a large growth rate, it can compete with other unstable modes such:
as the vorticity mode. We expect that downstream amplification of this mode can lead to
early transition on hypersonic vehicle surfaces. These findings motivate us to study the
reflectional instability mechanism fusther.

We also found that the upper waveguide modes can synchronize with the lower
waveguide modes. Near synchronism points, additional growth rate spikes have been
found. This instability mechanism is sirilar to those obtained from qualitative analysis of
a simplified flow in a shock layer [4), [S). In the vicinity of synchronism points the
normal mode decomposition is not valid due to the singular nature of the dispersion
relation. This situation has been studied by Fedorov and Khokhlov (3] for the case of
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moderate Mach numbers, Using their results, we assume that the nonparallel effects’ may
cause strong exchange between modes near synchronism point.
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-~ 4. Low-frequency instability of hypersonic interactive boundary layers
~ on a cooled surface

4.1 Introduction

This chapter reviews research supported by the contract and other funding concerning
propagation of unsteady three-dimensional perturbations in hypersonic interactive
boundary layers on a cooled surface. Such high speed boundary layers that are subject to
the combined effect of the interaction with a shock layer and cooling of the surface are
typical of realistic flight conditions and lead to substantial heat transfer and drag. The
geometry of a flat plate is considered herein. For this simple shape, the stability of even
the steady flow is complicated by a multiplicity of different mechanisms not exhibited at
moderate supersonic Mach numbers. Two classical limits naturally evolve at high Mach
numbers in this flow. Near the leading edge, a strong interaction regime occurs in which
the shock wave is not far from the surface and the viscous boundary layer and inviscid
shock layer are strongly coupled. Further downstream, the effect of the shock wave
disappears and the boundary layer develops under zero pressure gradient (weak
interaction). Strong and weak interactions have been studied extensively (see for
example, [1-3]. Transition to turbulence has been observed in the last region only.
However, as the Mach number increases, the strong interaction region expands rapidly.
This could significantly influence the early stages of transition, since it will affect
important receptivity and linear amplification processes.

In the limit of infinitely large Mach number, the temperature distribution has increasing
nonuniformity and cannot be described in closed form independent of the Mach number,
Additional distinctions are made in[4]. These include the observations that the domain of
importance is not semi-infinite as in lower speed regimes, the shock is strong and curved
and non parallelism can be more important and typical. Accordingly, the Orr-Sommerfeld
approach cannot be applied a priori, and a suitable hypersonic limit involving the Mach
and Reynolds numbers needs to be applied. Different types of instabilitics can be studied
using appropriate scalings rclevant to the characteristic wave lengths present.

An interesting type of instability is inviscid which is due to a generalized inflection point
within a thin transitional layer near the boundary layer upper edge. It was anaiyzed for the
moderate interaction regimc in (5] where the transitional layer between the cxternal flow
and a shear layer was considered and in [6] for a gas with a Chapman viscosity law and a
unit Prandt! number. The main conclusion of these studies is that there is a numerous set
of relatively weakly unstable acoustic modes and a most unstable vorticity mode. The
acoustic modes were also analyzed in (7] and (8]. The phase speed of all the modes is
close to the external flow velocity o that the relative growth is small. The results are in
good qualitative and quantitative agrcement with the computations for finite Mach
numbers in [9]. The more general case of arbitrary Prandtl number and power law
viscosity was considered in [10) where the effect of the viscosity on the stability
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characteristics was included. Continuation into the strong interaction zone was treated '

in[11] assuming the Sutherland formula for the viscosity and Prandtl number equal to

"unity. Weak and strong interaction regimes were considered and it was concluded that -

although the scaling is quite different, the qualitative features of the vorticity mode
instability are the same. The interaction leads to differences in the unperturbed flow
profile only and does not change the physical mechanism of the instability. No influence
of the shock wave arises because the perturbations are mostly concentrated in the
* transitional region between the shock and boundary layers. However, as shown in [8] for
~ the non-interactive boundary layer on a wedge such influence may occur in some
situations when there is a proper comrelation between the wavelength scale and the

thickness of the shock layer. Another example of amplification of the small time-
harmonic perturbations in the curved shock layer was obtained in [4] by analysls of the
~ initial boundary-value problem in the downstream direction. B

Other types of unstable waves are smal] phase speed viscous modcs described within thc |

framework of triple-deck theory in [12] which showed that in supersonic flows, unstable

modes of this type are essentially three-dimensional, where the direction of propagation -

lies outside the Mach cone. They dominate at moderate Mach numbers, but have
negligibly small growth rate at hypersonic speeds and inviscid instability prevails. The
last conclusion is correct if the temperature of the wall is of the order of the stagnation

" temperature. The effect of surface cooling at moderate Mach numbers was estimated in

(13] in which it was found that it increases the growth rates and compresses the scales of
the eigenmodes. For sufficiently strong cooling, the wavelength becomes comparable
with the boundary layer thickness and a new moderate cooling regime occurs. Surface
cooling is typical for hypersonic flight conditions. Its influence on the viscous modes may
be significant. Special study of the strong interaction case is particularly warranted.

Ahaiysis of the viscous cigensolutions in the strong interaction boundary layer was
initiated in [14] for the s:.ady two-dimensional case. It showed that their streamwise
evolution is controlled by a power rather than exponential law in the weak interaction

case. According to (15], the exponent in this power law grows to infinity as the specific
heat ratio tends to unity. Therein, an analytic formula for the exponent was obtained and -

it was shown that the disturbance field is governed by the interaction between the viscous
region and the main part of the boundary layer, while the upper region plays a passive

role. A relationship between this mode and the Lighthill mode in the weak interaction

region was postulated. This conjecture was subsequently verified by Brown ez al. (1975).
Another important result is that the exponent exhibits a sharp growth when the surface of
the.plaw is cooled. A similar conclusion was obtained in [17).

_This effort focused on three-dimensional unsteady disturbances. From the foregoing, it
can be assumed that cooling of the surface will lead to appearance of short wavelength
eigensolutions in the unstcady three-dimensional us well as the steady two-dimensional
case. Moreover, thesc perturbations can be effectively confined within the boundary layer.
Because the local Mach number within the boundary layer is of the order of unity, a three-
dimensional instability similar to that considered in [12] for the moderatc Mach numbers
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may -be anticipated. In- Section 2, the proper scaling for the perturbations field is
developed. The asymptotic expansions, aralysis of the each region and matching leading
to the complete formulation, which is a type of the triple-deck problem with a new
interaction law, are discussed in Section 3. As a simple framework to exhibit some of the
high Mach number physics and relate to the earlier two-dimensional steady effort, the

" linearized forced wransien problem of a harmonically oscillating hump starting its motion
at some instant of time is considered in Section 4.

In Section 4, the dispersion relation is analyzed and all eigenmodes with respect to
upstream and downstream propagation are classified. In particular, the mode of Neiland -
Brown and Stewartson is shown to propagate upstream. As a confirmation of
expectations, another three-dimensicnal mode appears that is unstable in the downstream
direction. Its growth rate is not bounded in the short wave limit so that the forced problem
is well-posed on the set of functions with compact support in wavenumber space. A
limiting process to a wider class of functions demonstrates that the part of the solution
containing the fast growing modes is convected downstream. Hence, in the large-time
limit the perturbation field consists of the time-harmonic component without an infinitely
growing mode. The far-field asymptotic of this component is estimated and the direction
of the maximal amplification versus frequency is determined.

Other possible mechanisms of instability and correspondence with cxpérimémal
observations in [18] and [19] are discussed in Section 5.

4.2 Formulation

We consider three-dimensional short-scale unsteady perturbations in a hypersonic flow
past a s¢mi-infinite flat plate developing at a distance L from the plate leading edge in a
region where strong interaction regime occurs. The Cartesian coordinates (x,y,z) and
corrszponding  velocities (4,w,v) are chosen in streamwise, vertical and spanwise
directions, respectively. Freestream pressure, density, temperature and viscosity are
- denoted asp_, p_, T_,u_and the external flow velocity as U..

The specific heat ratio 'y and a Prandtl number o are assumed to be constant, and the
dependence of the viscosity on the temperature is taken in a power law form

u/n.‘.=(T/T)" _ (2.1

The mean flow is basically controlled by mteracuon between the boundary and shock
layers and allows seif-similarity. Its profilc shown schematically in Fig. | includes three
characteristic regions: viscous high-temperature boundary layer, inviscid shock layer and
transitional layer sppearing due to singularity in temperature behavior near upper edge of
the boundary layer [2]. As the plate temperature decreases, the boundary layer solution
becomes singular at the wall because the viscosity vanishes there, and according 10
[13,17], an additional fourth buffer layer occurs near the surface where heat and
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momentum fluxes are constant while the temperature is of the order of the wall
temperature and changes rapidly together with the velocity. o

Ayt | ' vr - o
|  —

shock layer  — Oth) ' on’my . .
“\\“\T\\\;\\‘ : :-—_.

boundary layer 0Of(h) of1) .

AR AR AR R R AR S
\Eb uffer layer of ‘i\\?mlw )
(< i
N\<onstant fluzes \OI?

ot %)

‘, - YA

Fig.] Qualitative distribution of mean flow temperatures and velocity ‘across boimdary
layer. :

For convenience, the following two small parameters characterizing mean flow are

introduced
h=Re™“M* e=T, I(M’T.), . Lo 2.2)

where M is the Mach number, and Re is the Reynolds number. Both of these parameters

are based on freestream conditions and the distance L. The quantity T, is the wall -
temperature. For the rong interaction approximation to be applicable, the

parameterh which is the , lative thickness of the boundary layer must meet the additional
constraint ‘
hM =5 oo,

4.2.1 Preliminary considerations and scales

In this unsteady framework and consistent with the foregoing discussion, the
characteristic length of the disturbances are assumed to be small in comparison with the
global scale L, and their structure in the y -direction consists of multiple layers. There are
at least two different regions: the main part of the boundary layer and a thin viscous wall
sublayer. In what follows, the characteristic length and time of the perturbation are
tespectively denoted as Dx and Dr ;velocity and pressure variations as Du and Dp all
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values referting to the viscous sublayer and to the main part of the boundary layer by

subscripts v and b, respectively. For order-of-magnitude estimations it is assumed that:

(@)
(b
(c)

(d)

()

)

the pressure variation across the boundary layer is negligibly small.

streamwise and spanwise scalings are the same.

the viscous sublayer lies at the bottom of the buffer layer so that the undisturbed
flow in that region has a linear shear «elocity profile whose slope can be evaluated
by comparison of the momentum flux on the surface with that of the boundary layer,
so that ‘

KT, ty, ~ (T, 15,7, ~T,

Within this sublayér. the viscous forces are in balance with the inertia and pressure
gradient terms so that ‘

puAu | Ax~Ap/ Ax ~p Au ly,;.

in the main part of the boundary layer the perturbation field is mainly inviscid so
that only inertia and pressure gradient terms must be kept in balance. This implies

Py Au, | Ax ~Ap / Ax,

interaction occurs basically between the main part of the boundary layer and the
viscous sublayer and perturbations of the displucement thickness have the same
order in these layers

yAu,lu ~yAulu,

(This follows [15] for the steady case.)

(®

flow in the viscous sublayer is unsteady and aonlinear with respect to the time and
amplitude scaling of the disturbance

Ax/At~u, Ap~pu’

For completeness, these estimations must be supplemented by the order of the mean
boundary layer values

W~ u.vu. - U__p. - P_th’.T. -~ T.Mz,

as well as the equation of state

p/(pT) = Const.
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These relations lead to a unique scaling for the perturbation field in the viscous sublayer
and the main part of the boundary layer. To provide matching between these regions, an
intermediate layer of the constant momentum and heat fluxes is considered. Its thickness
Y, may be evaluated by comparison of the heat flux near the surface and with that of the

boundary layer. Thus,

MTIT, 1y, ~(TOT, 1 y,. .
‘Also for matching, a fourth upper layer located at the bottom of the shock layer is
introduced. In that region, pressure variations in the vertical direction are assumed to be
essential. Neglecting viscous forces, the thickness of this layer, Dy is given by the

condition that the local slope of the characteristics has the same order as the relative
thickness of the region,

where the local Mach number, Migc is connected with the local temperature Tjoc |
within this layer : '
My~ M(T, I1T.)™",

whfch, in turn, may be explicitly written following the asymptotic formulas (3.02), (3.13)
in [2] reexpressed in terms of physical variables as

Tioe ~T.M 2hz(Ay/ Lh).

This completes the estimates. As shown in [15] for the upper layer, [17] and (13] for the
buffer layer, both layers play a secondary role in the interaction but are necessary for
rational formulation of the problem.

Coupling of all of the above estimations gives us the appropriate scaling, which may be
written in terms of the small parameters h and e in the form

2e40

x=LU+€""%%,), : _ | (2.3)

: = Lez‘f”zl " .
f=(L/U,)€“3°l,.

2520)(3y-2) (3y-1)

y= u‘(elom}'l’ ekﬂyz' yl’yw+e y‘).
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The perturbation field is schcmatically shown in Fig. 2. It is decomposed into four '
characteristic rcgions: the lower viscous region y, = O(1), the buffer layer y, = O(l), the

mean part of the boundary layer y; = (XI), and the upper layer y, = O(1) located at the
bottom of the shock layer above the boundary layer upper edge y, = y,,. Assumption (a)
that the pressure variation across the boundary layer is negligible will be correct if the
following restriction on the small parameters is valid:

het*® 50, - | e
i.e. , the streamwise scale is greater than the thickness of the boundary layer. With such a

restriction, the upper deck will always be thicker than the transitional layer at any realistic
(0.7,0). : :

0(52+403)

0(524—4&)

Upper Deck O(heq)

O(h)  Main part of the boundary layer

e - Buffer Deck O(he!+vy,

O(hei1 +20) Viscous Deck

§C.1820€.022198

I —>
1

Fig. 2 Asymptotic structure of the perturbation field, ¢ = 2(1+ 2w)(3y -~ 2)(3y - 1).
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4.3 Asymptotic approach.

From condition (g), a typical amplitude of the perturbation within each layer can be
‘formulated. For these, the independent variables for the n" region are {x,.2,1,, y,}.
respectively, withn =1,...,4. These will be studxcd in the next subsections.

4.3.1 The viscous sublayery, = 0(1)’

The solution in this layer is represented in the form

1420

p=p. M (py+€"*p, +...) . @D

u=U"",+...
w= U_e'“’lwu-i-..'
v = U ke vy ...

| T =T.M*(Ty+...)

P =P A (€7D .)
In the absence of pcnurbations, the solution is a uniform shear flow

Tor =L Po = P10 = Boothyy =CYpowyy = 0, . 3.2)

where the undisturbed pressure p, and shear stress C, are determined by matching with

the remainder of the mean flow. Substxtutmg the expansions in the equations and
retaining like orders gives

P, (0w, /3t + 4y Ouy, / 3%, +v,,0u;, / Iy, + w“au,, 19z, +
y'op, 19x, = 0%u, 1 oy o (3.33)

Po(Owy 108, +u, 0w, / Ox +v,,0w,, / Oy, +w 0w, / 3z,

¥7'9p,, 19z = 3w, /Ay, (3.3b)
Py = Py (X200ty) . ' | : (3.3¢)
duy, 1 3x, + 3wy, / 0z, + vy, / 3%, =0 (3.3d)
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The boundary cbﬁditions on the surface are the no-slip conditions ‘
U =y Ewy =0aty =0. (3.3e)
At the outer edge of the layer, the asymptotic behaﬁor of the solution is
u, =Gy, +A(x,.z,,t,j+...,
Wi =>"(7Poq)’| )" .I{(ap“ /&,)dx, +...
wy = =( mC}y. )" K3p,, 13z2,)dx, +... as‘ »n = - | (3.3)

To complete the problem (3.3) a relation between the pressure perturbations p,,(x,,2,,¢,)
and the displacement thickness —A(x,,z,,#,) must be applied. This relation (interaction
law) will be obtained after analysis of the other decks. '

4.3.2 The brdfer region y, = 0(15

Although this layer is still thin in comparison with the boundary layer, ‘variations of the
mean flow temperature and density within it are not small. Requirement of continuity of
the pressure and the appearance of the asymptotics (3.3f) rewritten in tenm the variable
y2 implies the followmg expansions in the buffer region

le2w

p: p.h M (pn +€ P2,+...) | ) : ’ (3-4)
u=U_(e1,y(y,) + " %uy+...)

J2e

w=UE" wy+...

T= T.M? (T (y,) + €T, +...)
P =P K€ Pr(y)

The orders of the temperature and density disturbances in the above expansions are
estimated from the energy and state equations. Substituting these expansions gives the

problem for the mean flow and unsteady perturbations. The mean flow is charactcnzed ‘

by constant fluxes of heat and momentum, i.e.
d((T,,) duy, / dy,)idy, =0 (3.5

d(Tyy)*dT,, /dy,)/ dy, =0
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PxTs = Py = Const.

- The boundary conditions are

T, =lu,=0aty, =0, | B | (36
This systcm leads to the solunon | N |
| Te=Q4GUeols , - (3.7
hn =(G/ G)Ty =1
'P_zo =P .
Pu=p /Ty, |
The pressﬁrc P,, wall shear stress C, and heat flux C, cannot be specified until the global

mean flow solution is obtained. The next approxnmauon gives us the perturbation field
equations

UpOUy, | OX, + vz,du,o /dy, =0 - ' (3.82)
Py, 135, + ‘f'&)z,‘/az,“: o | @8
py ! dy,=0 | S o . (3.8¢)

| T, 13%,+ v, dTy, 1dy, = 0 | - (38d)
Pty / 3 + uxdp;, / Ox, +a(pmv,, )/ a,, | (3.8¢)
Pul P+ Ty /T, =0 ‘_ | | e8n

- This is a system of linear inviscid equations with the absence of the pressure gradient in

the x -momentum and energy equations. Note also that this deck and all decks above are
quasi-steady in contrast to the viscous sublayer as for other speed regimes. Formally, the
problem (3.8) is second-order with respect to the vertical variable y, (egs. (3.8¢),(3.8¢)).
To obtain.a unique solution it is therefore sufficient to specify continuity of the pressurc
and matching of the y-component of the velocity with asymptotic (3.3f) at the outer edge

of the viscous sublayer. By direct substitution, it can be verified that a solution of the
system (3.8) meeting these condmons is

Py = Pu(*p2t1) ' - (3.9)
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Uy = A(x.2,4 )Cx"d“zo / dy,

Wy = =Tu(8Pqtz J°lj(3pl,/az, Jx,
Vy = —umqa dA /axl
T, = AC]'dT,, / dy,

P ==AG (Py/Ty).

4.3.3 Main part of the boundary layer y, = (1))

Asymptotic expansions within this region may be obtained by analysis of the limiting
form of the buffer-layer solution (3.9) for large y; in terms of the variable y,, or by direct

estimation from the equations of motion, assuming that the pressure perturbation is of the
same order as before. This gives

la20

p=p. M (o +€"py+...) (3.10)

i+l0

u=U_(u, (y,)+€ “uy+...)

lozbw

w=Ug¢ pte.

v=UR(E" %, +.. v (y)+...)
T=T.M (T (y,) + € 7Ty, +...)

P =P 0y(3),

where the out-of-order term v,, included in the expansions for the vertical velocity is not

involved in the leading-order problem for the disturbances but is necessary for a
consistent description of the mean flow. The unperturbed boundary layer flow profile is
locally uniform (no dependence on the short scale streamwise variable x,) and obeys the
system of ordinary differential equations that result from the usual three quarter power
similarity (see for example [20]). A complete formulation also includes the problem for
the inviscid shock layer. This complete system was investigated in detail in [2), and in
von Mises variables in [3). A brief analysis of the problem in terms of the physical
independent variables is given in the Appendix. Here, we note only that the undisturbed

pressure is constant and the temperature and density distributions are connected by the
statc equation
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Py = PosPsuT s = Py (3.11)

The leading-order problem for the perturbations has the form

PPty 1 &, +vyduyy / dy, + 7' Opy, / 0%, =0 (3.122)
Pt Oy, 1 3%, +¥'3py, 10z, =0 ‘ (3.12b)
dp;, /9y, =0 i , | (3.12¢)
Pro(0Ty, / 3%, + v, dT,, dy; = (y =7 uydpy, / Bx, =0 | G129
PPt Ty T =Py /1y o (3.12¢)

Like the problem (3.8) for the buffer laycr, this gives rise to an inviscid linear system of
second ordexr with respect to the vertical variahle, but with non trivial pressure gradient
forces. Due to the inviscid nature of the problem, it is sufficient to apply conditions of
continuity of the pressure '

Pilxp2p08), . ‘ o : (3.13)
and matching the vertical velocity component with the buffer region solution. It is shown
-in what follows that the upper region is also mainly inviscid and the same continuity

conditions should be applied for its matching with the main part of the boundary layer.
Therefore, the analysis can be limited to solution for the two variables p,,,»,, only.

Successively excluding all other variables by expressing them in terms of p,,,v,,, and
their derivatives gives accordingly

PoPotbnd Vs I 9y,0x, = PPy (dis, / dy;)0vy, /9x, +
Y pukd’py ! & -1 P3P, 19%] +9%p 1 2})=0 (3.14)
The solution of Eq. (3. 14)‘mau:hcd with the buffer layer is
vy, 1 3x, =uy(~C A/ 3x, +(yp,) ' [(=3%p,, /3%, + T;o“;; 1 )dyy)
(3.15)

where the operator A is the two-dimensional Laplacian, i.e.

Ap, 29°p, / &} +3°p, /137 | (3.16)
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The integrand in the right-hand sidc cf the cxpression (3.15) has a singularity at
=~jtire)
= O which may be evaluated from asymptotics (A.4) s O(y, ). Since it is a weak
singularity for positive @, the integral exists and the solution is regular at any y, > 0.

4.3.4 The upper region y, = O(1)

The undisturbed flow in this layer is an asymptotic *“tail” of the shock layer solution
considered by many authors (sce, for example, [2,3]. Thesc analyses show that the
leading-order pressure and velocity are constant in this layer while the temperaturc and -
density have a power law singularity at the lower boundary (y, = 0°). Assuming the
pressure perturbation to be of the same order as that within the boundary layer, the
“amplitudes of the other perturbation components can be estimated. This leads to solution
expansions in the fonn

P=pRM (pu+€ py+..) | BN CRD)
u=U_(1 +..\.)

VU h(y g+ E0ITIOTNy )

T=T_RM*e """ T (y,)+T +...)

p =p-£4(101u)l(!r-0)(p‘° (yz)"’ e)t?u .+ )
Thc above expansions do not include perturbations of the stream- and spanwise velocity

components since, like the mcan flow problem, the leading-order equations for the
perturbations decouples and these velocities are not involved in the problem for

{p.p.T.v}.
The mean flow distribution may be obtained in an explicit form from results of the

previously mentioned authors, giving after some manipulation of the dependem and
independent variables

P = Po | ,aw)
Vo =(3/4)y,
Ty = By, y"or®

243y 2)

Puo=PB"(3,)
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'Here, the constant B is expressed in terms of the the boundary layer pressure p,and the
locatxon of the shock layer y;, as

B=3'2"(r+ 1)'.’""’(77 0By -2 .

" In the next approximation, the equations for the perturbations take the form

PV 3%, 4y 9P, 13y,=0 | - (3.19a)
(T 135, +v,dT o | dyp-(y=17"3p, /35, =0 o (3.19b)
ap‘,/ax,+a(p‘°v.,)/ay, o ) (3.19%)
.p‘. 1P +Tu/To=pulps o (3.19d)

~ This systcm‘ is rcdﬁcc‘d to a second-order equation for the pressure with boundary
conditions of continuity of the pressure at the lower boundary and a radiation condition at
. 'the upper one. This leads to a standard hyperbolic problem in a nonuniform medium

.azpu / axp ‘a{rwap¢} / ay4} /dy, =0 | © (3.20a)
Pa=py @ y=0 - | (3.20b)
" radiation: (3/3%,+ VT, @/3y,)p, =0 85 y, = +eo. (3.20¢) -

A formal solution of this problem may be obtained by application of the Fourier
transformation with respect to x,, solution of the resulting ordinary differential equation,

and inversion. If the pressure on the lower boundary is decays sufficiently rapidly in the
upstream direction, the solution exists and its explicit form is

Pul = f_(G(xl - C.y‘){ap!,(é.z,.t,)‘/ a§1ds . . ‘ v (3.2

The kemel function G has the integral representation

G(§.y,)= H(§ - D1 - 2"'T(1 - g)sin(2 zg)

[Ty 121 (ke Mk 1k, - (3.22)
where

F"’(l+r12)" M r=2/(3y-2), gu(r+l)/(r+2)
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Hcre. H(x)is the Heaviside function and /,(x) is the modified Bessel function. Solutions

for the other components may be expressed similarly. The expression for the velocity at
the Jower boundary is

va=-D[" (3p,(.2,.5)/ 3&)(x - §)dE | (3.23)

where the factor D is

D=(ymp,)"'B'(r+2)"'T'(1- g) 29~ 1) (g)sin(2ng.

At the outer edge of this region, the nearly uniform medium approximation becomes
applicable. Accordingly, disturbances will propagate along characteristics. The
disturbances will enter the main part of the shock layer along positive-slope first family
characteristics and propagate up to the shock wave. They then reflect as characteristics of

the opposite family toward the boundary layer. From an estimate of a typical slope of the -

characteristics within the shock layer it can be concluded that the reflection zone lies
downstream of a distance of the order of L. Assuming the upstream influence through
the boundary layer is weak, the reflection effect can therefore be neglected.

Another comment concems matching with the solution in the main part of the boundary
layer. To provide this matching Bush in {2] has demonstrated that a thin transitional layer
needs to be interspersed between the boundary and shock layers for the casey # 1 where
the singularity of the mean flow is being smoothed out. Without special analysis, it is
evident that the viscous forces are still negligible in this region (for the perturbations
only) and leading-order equations for the vertical component of the velocity and pressure
are very simple, since both variables are constant in the vertical direction. This behavior
may be established by direct order-of-magnitude estimations and also follows from the
fact that the pressurc and vertical velocity are finite at both edges of the transition region
while its thickness is much less than the thicknesses of the boundary and upper layers. In
other words, the transitional layer is passive with respect to type of the perturbations
considered.

On the other hand, the typical amplitude of the vertical velocity in the boundary layer is
much greater than within the upper deck. Therefore, the necessary matching condition i is
- that the boundary layer velocity is zero at the upper edge, i.e.

1 =0at y, = yy. ‘ (3.29)

This means that the boundary layer disturbances are almost fully reflected by the shock
layer. This result is actually the same as that obtained in [15] for rapidly varying steady
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perturbzmons Applymg the requirement (3.24) to the formula (3. IS) a relation between
the pressure and dxsplaccmcnt th:ckness

~3A13x, + CpD) )" (1 35! + Tuss by )y, = 0 (3.25)

is obtained. Equatlon (3.25) completes the problcm (3.3) for the viscous sublayer. ’l‘hls '

gives a new kind of triple-deck problem with a different interaction law than previously
considered. In the two-dimensional case, the last term in (3.25) dcgencratcs. and the
formula is reduced to a more simple form

A+const p;, =0

which was analyzed in[16] and [21).

4.3.5 Final formulation.

The problem (3.3) with. the interaction law (3.25) is now considered. To reduce it to an ‘

invariant form, an additional transformation of the dependent and independent variables
(x ._1.'.) =Pocl-’yg(-x'2)3 (.wy) = C\'l)';o'(U' W)
(x02)) "'lPoCx-z}'x— ',Y ’ Vu =p; Clz YoV

= 2oC 'y T: Py = T(GCyn) " P - (3.26)
is apphcd A new parameter 0 dependmg on the properties of the gas via parameters

(0.7.0)

cos’0=(ye) [Tl (3.27)
is also introduced. Numerical values for all factors used in this scaling are given for air
and helium in Table 2 of the Appendix . The right-hand side of the last expression is the
average vrilue of the inverse square of the local Mach number across the boundary layer
and is less than unity for both these gases (probably for most others as weil). After

substitution of the rescaled variables into (3.3), (3.25), the governing system of cquatlons
takes the form -

Uy + UU +VU, + WU, +P, = Uy . (3.28a)

W, + UW, + VW, + WW, 4P, =W, (3.28b)

Uy +V, +W, =0, | | (3.28¢)
and the boundary conditions are a |
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U=V=W=0atY=0 (3.292)

U=Y+A(X,Z,)+...W—>0asY - " (3.29b)
Ay +sin’ 6P, ~ cos 6P, =0. (2%

Here, subscripts denote corresponding partial derivatives' and the function A is
renormalized in the same way as the streamwise velocity. That formulationn does not
include any effects of forced disturbances coming from the surface or external flow. Fora |
perturbed surface, such generalization can be made by simply changing the ooundary o

condition (3.29a), to

UsW=0,V=F,aY=FX2T), (3.292)

where the function F describes the scaled shape of the surface. Reformulation for the
case of external flow disturbances demands a special study of their transformation within
the shock layer and is outside the scope of this chapter. Instead of the homogeneous wall
conditions (3.29a) the modified version (3.29a") will be applied in what follows. In
keeping with the primary thrust of this study, a linear stability ana]ysxs of the resulting
problcm will be made.

4.4 Linearization and solution

In the linear approximation, thc solution is expanded in a power series of a small
parameter (a) characterizing the amplitude of the perturbation so that’

U=Y+aut...W=aw+....V=av+....P=ap+....F=uf +... 4.1) -
Here and below, small letters denote only scaled values and do not éorrcspond to primary

dimensional variables as in Sections 2,3. Substitution of this representation into
(3.28),(3.29) gives :

ur+Yux+v+p,=u,; (4.2a)
wr+Ywy +p, = wy (4.2b)
Uy +vy+wy =0 : _(4.2c)
um=fw=0,vafatY=0 ' (4.24d)
Uyy +8in’ Opgy - cosd’ Opgy=0w—0aty —des : (4.2¢)
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For the solution of this problem to be unique, an initial condition at some instant of time
must be specified. This condition is assumed to be

u=v=w=p=f=0atT<O0, , 4.3)

implying that surface variations are switched on at T'=0. These variations are assumed
to be bounded continuous functions vanishing in the X - and Z - directions

FXZDeC.f—>0as X +2° — oo, | (4.4)

From the restriction (4.4) it is plcusible that the solution is also bounded at any ﬁnité
instant of time* and the double Fourier transformation with respect to the streamwise and
spanwise variables can be applied. Based on tt.. standard assumnption that the temporal
growth is not faster than the exponential one, the Laplace transformation with respect to

the time can be applied. These transformations written symbolically as

LT = ~io)F(Z—if,X > ia)u,w,v,p,.fh(a.f)e (= +e0),(-it0) > 2 (4.5)

~ reduce the problem (4.2),(4.3) to a system of ordinary differential equation§ (the Laplace

transform variable was rotated in the complex plane for a more obvious analogy with the
canonical triple-deck formulation to connect with previous work). The solution procedure
has been used by many authors (for the three-dimensional unsteady case see for example,
{12,22]. Differences with the present formulation relate only to the form of the
interaction law used. For this reason details of all intermediate steps including the
inversions back to the physical space will not be presented. Only the integral
representation for pressure is given which is

p=@m* [ [expliaX +iB2)da1p[ expl-ioTID™ (. B.0)f(@. B, 0)dw (4.6)

where the function f(a,f,) is the shape of ihe surface under the transformations (4.5).

_ For the problem considered here, the dispersion function D expressed in terms of the
Airy function, A is '

 D@.fo)=(ia)"[1+(B/ aV KA (~z)I" [ Aite)dz +sin’ 6~
w/ a)’ COS’ 7] 4.7

373,

3 =io/(ia)*-x <agia)< n. (i)'

>Oforia>0.

" Of course, it does not exclude the possibile existence of unbounded (unstable) salutions in the large-time
imit.
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The coniour C in (4.6) passes from left to right half planes of the complex w-plane:
above all singularities of the integrand (due to causality principle), and both its ends are
directed into the lower halfplane to provide convergence of the inversion integral for p.
Since the integrand is a function of the wavenumber (a,8), the contour C also dcpcnds
. on the wavenumber.

Properties of the solution are determined by zeroth of the dispersion relation (4.7) which
correspond to ei gcnmodcs of our problem.

4.4.1 Analysis of the eigenmodes

Since the square of the spanwise wavenumber B occurs in the dispersion relation only
the case f20 need be considered. Results of numerical analysis of the dispersion
relation for 8=61.67_ corresponding to air (see the Appendix) are presented in Fig. 3.
The simplest picture is observed in the two-dimensional casc (f=0). There is a
denumerable set of eigenwavenumbers a with real positive frequencies, one of which
lies in the left lower quadrant of the complex a-plane, and others move from the zero at
- @=0 into the right upper quadrant In the steady case, the first root may be written
analytically as

ia = ~3A7 (0)sin® 6)°. ' (4.8)
Accountmg for the scalings (2.3), (3.26). lhxs value agrees in the Newtonian limit
discussed in [23] (noting that according to (3.27) sin@ = 1 as 7 —» 1) with the exponent

in [16] their power law for disturbance propagation is converted to the approximate
exponential form

£ s Vo

2 T I LEEE LA B
' - ’ . -

-
mws 0P -
-
(N J -4
i m— — 4
2 PUNEE WINPT ST S SR G S G S
2 14 -18 44 [] [ 13 18
Pou

Fig. 3 Movement of the roots in complex plane as frequency goes from zero to infinity.
(Solid, three-dimensional case at § = 1 ;dashed, plane modes at §=0). Arrows
indicate increasing frequency.

(x/ L) mexpinAx/ L)as n— e, nAx / L = O(1) (4.9)
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This implies that the two-dimensional steady state version of the asymptotic regime
considered here describes the Neiland - Brown and Stewartson eigensolution.

In the three-dimensional case, all these modes also exist and exhibit the same qualitative -
behavior, but in addition, two more eigenwaves appear. One of these is located in the left
upper quadrant and, like all previous ones, does not intersect the real axis. Another one
starts from the zero in the right upper quadrant, but after some critical value of the
frequency, intersects the real axis. The’ largc-frcquency hmlts of these modes are
respectively

a"’:-ﬁcote+ﬂ);a‘2’ =fcotf ~i0as @ = e 4.10)

The imaginary part of the second three-dimensional mode versus the frequency is shown
in Fig. 4 at different positive spanwise wavenumbers . As f is mcreascd the depth of -
the minimum also increases, i.e.

min . {Im(a)} = ~esasff - +oo, | _ . (4.1la).
.or, similarly for the real wavenumbers and complex frequency
max, ,[Im(@)} = +eoas f = +oo, .  @.11by

Equations (4.11a) and (4.11b) imply that the contour C in the integral (4.6) actually
depends only on the spanwise wavenumber B, and hence the order of integration with
respect to frequency and streamwise wavenumber can be changed. Accordingly, Briggs’
[24] criterion can be used to specify the direction of propagation of each eigenmode.
According to this criterion, the streamwise wavenumber of the upstream (downstream)
propagating eigenmode should belong to the lower (upper) halfplane for a sufficiently
large imaginary part of the frequency. Specially conducted computations show that the
root lying entirely in the lower half plane at real frequencies correspond to the upstream
propagating wave, and all other modes propagate downstream with one of them being
unstable. In particular, the stationary mode of Neiland-Brown and Stewartson propagatcs
in the upstream direction.

Anothcr important consequence of (4.11) is that the growth rate of the unstable -

eigenmode gocs to infinity as the wavelength decreases. In fact, realistic physical systems ™
do not contain infinitely fast growing modes, and the present situation is a result of
sxmplxﬁcatwns made in the asymptotic limit considcred. Thus, the possibility of well-
posmg of the forced problem requires additional investigation.

4.4.2. Analysis of the initial boundary-value problem

In typical formulations of the forced problem, the large time behavior of the boundury
surface is assumed to be harmonic. This implies that the function f(a,8,@) is analytic -
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Fig 4 Img vs. for unstable mode at (a) B=.05,.1,.15,.20+ o (b) §=.4,.6,.8,1.
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with a simple pole at some real frequency @ = @, >0. To provide the existence of the
solution of the forced problem which is equivalent to convergence of the integral (4.6),
the class of the surface shape functions is restricted by imposing limitations on their
decay in wavenumber space. Properties of the solution for this set are investigated in
what follows. Implications of relaxing these limitations are then considered. For
simplicity, the special case of shape functions of compact support in the b -direction

f(@.B,0)for|f <8,

fu (a’p w) -

Ofor 1> B,;B, = +%0 asn — . - 4.12)

is studied. Within this class of functions, the infinitely fast growing waves are excluded
and the solution does exist. The region far downstream from the source of the
perturbations where the unstable eigenmode dominates is now considered. Accordingly,
only the contribution of the unstable eigenmode is important. For convenience, the order
of integration is reversed with respect toa andw, and the integrals with respect to cach
variable are considered successively. The first integral may be estimated as

[ e f(a.p.0)D" @.B.0)da =
2miexpliar, X) f(,, .0} D, (at,.B. )} (4.13)
Here a, =a,(8,w) is the root of the dispersion relation corresponding to the unstable

mode. The next integral with respect to the frequency contains contributions of the shape -
function pole at @ = w,and the branch points D/ da = 0. Dividing it into the time-

- harmonic contribution written in an explicit form and a remainder term /,, gives

j' exp(-;coT+za,X) fle, B, 0ND, (e, f.0)) " do» =
-Zniexp(—:a)oTﬂa,oX) res [ £ (a,q. 0.0, ){D, (et B, wol" (4.14)

where o, = o, (B,w,). The first term of the representation (4.14) includes only the
modes with bounded growth rates so that its behavior is regular as 8 dal The second
term contains the modes growing infinitely fast s § — oo,

At finite X and T, I in (4.14) can be estimated approximately by>the method of
steepest descent assuming the spanwisc wavenumber b is large. In that limit the
eigenvalue is expanded into the descending power series in 8

0= pQ; o, = PAQD)+ B A+..., (4.15)

where the coefficients A, are described by the implicit cquations.obtaincd after
substitution of the expansion (4.15) into the dispersion relation (4.7)
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(1+A,1)A, +Q(sin’ 6A » ~cos’8) =0, (4.16a)
Af(A =1 /Q+2c0s’ 87 A,) - Al (i) (A +1)=0. (4.16b)

There are thres branches of (4.16a). The branch of interest here is confined within the
finite region (cf. (4.10)) :

—cotf<A, < cOtBJA <o in~w< Q<. .17
The location of the saddle point in the w-plane is determined from

dla,X-oT)/dw=0.
This gives

W, =Sy + B +.... ' ‘ (4.18)
where the expansion terms are obtained from conditions

dA, 1dQ=T/X,Q, =-dA, 1dQ(d*A, / ), (4.19)
with all derivatives taken at 2= Q. Elcrrientary analysis of the conditions (4.19) with
(4.16) shows that the saddle point exists at T/ X<cos’ @, and its contribution is
exponentially large, i.e., '

I = O(exp{CB"*D,as B = «; X > T / cos’ §, C >0. (4.20)
In the region X < T /cos’ 6, the saddle point contribution is absent at large b and the .
remainder part I, of the integral defined by (4.14) should be evaluated at finite values of
B. For Xand T large, I, is evaluated from the contribution of the branch points

(0D/ da = 0) which are closest to the real axes in @- and @ -planes. If position of these
points is denoted as

a,,(B), , (B)
the value of J, is roughly expressed by
I, =Ofexpllm(w,, (B)T - @, (BX]). 421)
This contribution represents a vorticity spot appearing when the oscillator starts its

motion. This effect was considered in detail in [25) for two-dimensional subsonic
boundary layers and in [22] for the three-dimensional casc. Al) branches occur in the
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lower half of the - and @ -planes-and do not intersect the real axis, so that the vorticity
spot is convected downstream with finite velocity: The -present case differs mainly
because some of the branch points approach zerc from below as B 0. Howcvcr, they
do not intersect the real axes so that :

lmco,,,SO,Ima,,_O,_Imw,,,/hna,,quio @)

Behavior of @,,,0,, and Im®,, / Ima,, versus B for the first branching point. of this
kind is shown in Fig. 5. Relations (4.22) .imply that I, represents disturbances moving
downstream with the finite velocity. On.a ray X IT=c<1/cos’8, (Case(i)) the
disturbances are growing not faster than exponentially and ‘are bounded at any f§, while
for X/T>1/cos’8, (Casc (ii)), they are unbounded as ﬁ ~» oo in agreement with the
formula (4.20). : -

The last integration in (4.6) with respei:t to the spanwise ‘wavenumber gives a finite limit
as B, = o in Case(i) and generally has no limit in Case(ii)’. Therefore, the asymptotic
regime considered is applicable for the region X /T <1/cos*8 only. The perturbation
field further downstream requires a special analysis of the high frequency eigenmodes.

For increasing time, the vorticity spot displays far downstream and the pcnurbanons field
consists of time-harmonic oscillations only. Thus
pr= r expliBZ + i, X — iw,T] res [ £(@0,8, m,,)]{D (0o, B, @) 'dP
X+ XIT<c, (4.23)

The distribution of the imaginary part of a,, versus A is shown in Fig. 6 for different
frequencies. When the frequency is small, there is 2 minimum of Im @, at finite §. If the

frequency exceeds some critical value o* (=0.30 for air, =~0.78 for helium), the
minimum disappears and Ima,; tends monotonically to its lower boundury asﬂ =00,
Accordingly, the solution behavnor is different for both cases. -

Estimating the integral (4.23) by the method of steepest descent onaray Z= X tan ¢, the
position of the saddle point is determined by a condxuon :

d(a, +Pftang)/df =0, ' o ’ (4.24a)
which is eqﬁiva]ent to Values of a,,fB, corresponding to the saddle point can be

calculated from (4.24b), and the growth rate g can be detummed along the ray
considered to be

* Even if the shape function is rapidly deciying in B -dircction so that the integral exists as ﬂ,, ) oo  the

temporal growth of the solution is faster than exponential and the application of the Laplace transformation
is not comrect

4-24




SC71062.FTR
o=-Im[a, + B, tan¢}. | (4.25)
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Fig.6 ‘Imtx vs. B for unstable mode at different frequencies ; @ =.05, .15, .30.
daye/ dff +tan@=0. - . . (4.24b)

If there is an angle ¢, of maximum amplification, the rclauon
do/ do =1Imldp, / dp{da,, / dB +tan @]+ B, / cos’ p)=0at ¢p @ (4.26)

holds. Combination of (4.26) with (4.24b) leads to the conclusion that on the ray of
maximum amplification the saddle point coincides with minimum of the function
Ima,,(B) at real B. Results of calculations of the angle ¢, and the comesponding
growth rates are given in Fig. 7. For frequencies below the critical value @ *, this angle is
different from zero so that the far field disturbance distribution consists of two Gaussian

humps in the spanwise direction at Z=%Xtan ¢, with typical width O(ﬁ ) Their

maximum amplitude is

pIm/a,"(8,)X]" explic X +iB,Z - iw,T1x

res(f (@B, W)}/ { Dy (2. By, )}, @ = 0. | (4.27)

The case @), > ®* cannot be considered in the same way as previously, and requires a

special analysis. For this case, the main contribution in the integral (4.23) is given by the
most unstable modes now concentrated at the large B. The approximate form of the
cigenvalue in this region is
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@ = a(@,)+ fa+... (4.28)
where the terms of the expansion are obtained from
Dy(ay) (ia)"” {Ai'(2) ' [Ai(2)dz = cos’ 6. 2, = i, / (ia,)*”
a‘ = 02 /D(;(ao)' (4-29)

Depcndcﬁce a, on the frequency is shown in Fig. 4a as the limiting curve as 8 — =, At

the low frequencies (the neutral frequency for air @,=0.116, for helium @, =0.303), such
limiting modes are stable, while at high frequencies the growth rate is unbounded. Due to
the absence of the minimum in the distribution Im &,,(f) the unequality

Ima, >0
holds. For this condition, the contribution of the region Iina, >0.in the integral (4.23) is
exponentially small, and the approximate representation (4.28) can be used in the whole

region of intcgration. Taking for simplicity the residual of the shape function equal to one
(8 -function shape oscillator in the physical space), the solution can be written in the form

p = explia,X = iw,T)J(Z,X) / {Dy(a,) I &)’
52Z.X) = [explifZ +iafX1dB 1 B (4.30)

Here ,
D= (B/a,) Dy+...as § —> oo. The value of J at Z=0 is finite

7 =(_”/‘iqx)lll‘
and as ZJX = oe it d=cays exponentially for Ima, >0.Thus
J=(®/6aX) " expl3Z’? X*(a, 14)").
Therefore, at supercritical frequencies @ > @°, the perturbation is concentrated in a thin

region near the x-axis with a typical width O(l/ JxX ) A qualitative picture of the ficld
of perturbations is shown in Fig. 8.4.5

4.5 Discussion and conclusions

The foregoing has shown that the strong interaction hypersonic boundary layer subject to
surface cooling of the surface is unstable with respect to low phase speed (low frequency)
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Fig. 7 Characteristics of the far downstream field from vibrator. (a) Angle of ray of

maximum amplification @, vs. frequency of vibrator. (b) Growth rate on the ray
of the maximum amplification versus frequency. (i):Air,(ii):Helium.
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Fig. 8 Schematic picture of perturbation field induced by time-harmonic source on a
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viscous eigenwaves. This does necessarily preclude other types of instabilities. On the
contrary, in addition to inviscid inflectional instability of the transitional layer considered

' - before in [11], another inflectional instability should occur, because for sufficicntly strong

cooling a generalized inflection point appears within the boundary layer. (This can easily
be concluded from analysis of the mean flow asymptotics near the wall). Results of
computations for air presented in Fig. 9b (see the Appendix) indicate that such a point is
~ located approximately in the middle of the boundary layer. Moreover, as follows from the
. analysis of [2], even for the hot wall and realistic gas parameters (0, ¥,@) the mean flow
velocity tends to the freestream value from above, and an additional inflection point
exists near the upper edge of the boundary layer. Our computations (see the note in the
end of the Appendix) show that this point is extremely close to the boundary layer edge
and must be obscured by the transitional layer for realistic Mach numbers.

In any case, these inflectional instabilities have a typical frequency not less than the ratio
of the freestrearn velocity to the thickness of the boundary layer in the strong interaction
region. Typical frequencies associated with transition to turbulence are based on the
boundary layer thickness far downstream and are much smaller than these inflectionul
instability frequencies. Therefore, the viscous instability considered may have more
practical interest even if its growth rate is smailer than the inviscid one. This conjecture is
supported by the experimental study by Holden [18,26) of the hypeisonic boundary layer
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on the cooled cone at zero angle of attack. He observed the occurrence of highly visible
waves in the region where the ratio of thickness of the shock and boundary layers was

1 00 ‘ v S $C1829€ (0227298
0.75 -~
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0.25 ~
0
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1000 J‘
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Fig. 9 (a) Mean flow distribution for velocity and temperature.(i)  uyp(y;);
(i1)To(y,)- 10 .(b) Distribution of uy(y,)/Ty(y;) within boundary layer.
Minimum corresponds to generalized inflection point.
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= 10 (under strong interaction it is = 1.7 for flat plate in air). These waves were three-
dimensional, had a continuously growing phase speed from 0.5 at the start of observations
up tc 0.85 at the end of transition. The effect of three-dimensionality is believed to be
related to the type of instability considered here.

Another interesting observation was made in [19] in the study of hypersonic transition
. induced by a solitary roughness. Therein, it was found that if the distance between the
nose and the roughness is less than some critical value, the wake behind the roughness
has a thread-like form, and bursting into developed transition occurred far downstream.
Our analysis shows that if the frequency of the source is less than some critical value, the
far downstream perturbation field is like a swallow tail. For the high-frequency case, it
. narrows, with the width of the tail being inverscly proportional to the square root of the
. distance from the source. The downstream growth rate increases with frequency (cf.
results of calculations in Fig. 7 and qualitative picture in Fig. 8). Thercfore the high
frequency disturbances must dominate. Accordingly, the wake behird a point source with
a broad spectrum of frequencies must concentrate near the central axis of the source, in
- agreement with the previously mentioned experimental result.

The physical mechanism of instability obtained is close to that analyzed in {12] for
moderate supersonic specds. In this case, instability occurs for the waves directed outside
the free-stream Mach cone which arc therefore effectively subsonic and qualitatively obey
the same mechanism as Tollmien-Schlichting waves in incompressible boundary layers.
For the case considercd herc, the disturbances are confined by the boundary layer and do
not penetrate outside it, so that the interaction is realized between the viscous sublayer
and the main part of the boundary layer. Hence, the role of the freestream Mach number
is replaced by some effective Mach number averaged across the boundary layer. Since the
local boundary layer Mach number is of the order of one the Mach cone angle takes on
finite values different from 7z /2 and independent of the free-stream Mach number.

The important difference from the moderate supersonic regime is the presence of the
infinitely fast growing modes in the short-wave limit. Therefore, the forced problem is
well-posed on the class of shape functions of compact suppert in Fourier space. For a
time-harmonic source switching on at some instant of time, the fast growing modes
contribute to a vorticity spot which originates at the start of the oscillations and is
convected downstream with finitc velocity. Continuation to a wider class of the shape
functions can be made in the region of physical space passed by the high-frequency
vorticity spot and containing the time harmonic component only. The high-frequency part
of the vorticity spot cannot be described within the present framework but needs
consideration in another asymptotic regime.
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4.7 Appendix. Undisturbed boundary layer.

In terms of the physical variables the system of equations controlling the mean boundary
layer flow is : '

¥ =303yt —4vi0) | | o (A.1)
Y = Pty — (W 140y = Py 1 27 = ((Tyg) “u3p)’

~(¥ 1 8T o+ pag(y~1)1 27 = (- DTS + 67 TETLY

me;o = po.

" Here, ¥ is a stream function introduced for more convenient numerical integration, and
prime denotes differentiation with respect to y,. Boundary conditions are

Yzu =T,=0 at =0 , - (A.2)
‘P—-)oo,v,o=3ym/4,u”=l,7'm=Oaty_,—)y;,o.'i

with the location of the upper boundary y,, dctermined simultancously with the solution.
- The pressure p, is not a prescribed value but is dctermined only after coupling the
problem (A.1),(A.2) with the problem for the inviscid shock layer. This layer is confined

between the upper edge of the boundary layer y, and the positicn of the shock wave -

Y31 > Y. Due to self-similarity, its profile is also described by a system of ordinary

differential equations which' are the reduced classical ones of hypersonic small

perturbation theory, and may be treated as a locally uniform. Boundary conditions behind
the shock wave are the Rankine-Hugoniot rclations and the main-order matching
conditions with the boundary layer which are continuity of the pressure and vertical
velocity. ' '

For complete formulation of the boundary layer problem the detailed structure of the
shock layer flow is not necessary. Only an additional relation between the pressure and
the vertical velocity at the upper edge (the global interaction law) is sufficient for
obtaining a unique boundary layer solution. For evaluation of the mean flow in the

Region 4 lying at the bottom of the shock layer, the location of the shock wave is .

required. Numerical data appropriate for these both purposes were obtained in [15]for
mono- and diatomic gases. Their scaling formulae (2.1) and solution represcntation
© (2.9),(2.10) gives ‘

Polvia(ysa)} ™" = (11 2)7(Y + D Py (0 V,(0)} 2,  (A3)
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Yo/ ¥y = (112X 7 + DV, O},

where P,(0), V,(0) are their scaled pressure and vertical velocity components at the
bottom of the shock laycr. Substitution of their numerical values gives the 1esulis in Table
1. For comparison the analytical result for Newtonian approximation (y— 1) is also
shown. ‘ ‘

'fablc 1. |
molecular structure Y ' Po{.v)o()’m N ! Yo
one-atom 5/3 3.098 2.086
two-atom 5 1.990 | | 1.691
1+0 23 1

Noticeable differences in the global interaction law for the different values of the specific
- heats ratio appear because our primary scaling does not involve this parameter.

For integration of the problem (A.1), the boundary conditions (A.2) must be replaced by

their asymptotic counterparts. Conditions at the wall follow from matching with the
solution (3.7) within the buffer layer ‘

T, = (G + @)y, - - | (A.4)
up = (G G)C(1+ @)y,

Asymptotics near the upper edge werc obtained [2] using stream function as the
independent variable. In physical variables, they take the form

T,, = Const (y,, = y,)" "' (AS)
u,, =1+ Const, (y,, = 3,)"",

where |
Const, = {p,a(l + w)(1- @)™ {1 + (}'- Il - )y 4" (A.6) |

Const, =(1=@){Y + (¥ =1 - ) '{1=0(y - 1)1 - @)/ ¥} ' Const,.
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Calculations were conducted by the Runge-Kutta method with variable step of integration
for two sets of the gas parameterso,y,@ comesponding to helium and air. Numerical
. values characterizing the mean flow profile are presented in Table 2

Table 2

Gas c Y w Ci C2 Po Yio Y e°

He 2/3 3/3 647 | 4294 | 1334 | 4538 | .5103 | 1.064 | 52.94

Air | 72 75 | 34 | 3895 | .1328 | 2151 | 4384 | 7413 | 61.67

Actually, these data are not far from the ones obtained in [3] for the Chapman viscosity
‘law and Prandtl numbcr equal to unity. The velocity and temperature distributions for air
are presented in Fig. 9a, and distribution of the value u(y,)/ Ty, (y,) characterizing the

location of the generalized inflection point is plotted in Fig. 9b. Behavior near the
04 L SC 1826€ 022298

T l I ) ' L} l I F ) 1 L ]’ T
(030'1) * 108 . ‘ :
T30 * 108 i .v , ' o ' 1
R, (i), .
03 . , -
~ -
02 P e -
0.1 w . . A ~~‘\~ ' -
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-0.7 -0.6 05 0.4 0.3 -0.2 0.1 0
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Fig. 10 Comparison of calculations of mean flow velocity and temperature with
asymptotics near boundary layer edge. (solid: calculation; idashed: asymptotics).
(i): ((uz, = 1) - 10 5(ii) Typ - 10° vs. (¥, = y,0)-10".
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boundary layer edge and comparison with the asyraptotics (A.S) are shown in Fig.10 in an
enlarged scale. Note that in agreement with the [2] the velocity approaches unity from
above (Const}>0) so that there is a local maximum of the latter within the boundary

layer. Its position is extremely close to the upper edge

Uy -1=107-10"at y,, — y, =6.96-10°°

and is not resolved on the large-scale figure. The mean flow for helium exhibits the same
qualitative behavior.
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5. Unstéady Newtonian thin shock layers and hypersonic flow
stability ‘

5.1 introduction

Although the stability of high speed flows has received much attention in the recent
literature, major complicating aspects have not been treated in a unified way. These
features include the combined effects of the finite shock displacement on the boundary
layer, the nonparallelism of the flow and the vorticity introduced by the shock curvature.
The relevant structure of the shock and boundary layers has been treated in [1]-[9]. In (6]
and [7], the aforementioned stability issues were discussed within thc Hypersonic Small
Disturbance approximation for the inviscid deck strongly interacting with the hypersonic
boundary layer. Equations of motion for the mean and fluctuating small amplitude flows
were analyzed. Because of nonparallelism in this framework, the spatial part of the waves
cannot be treated by the usual Fourier decomposition and an initial value rather than
eigenproblem for spatial stability is obtained. The initial value probiem leads to partial
rather than ordinary differential equations that require a numerical marching method for
their solution. Results indicate that the specific heat ratioy plays a major role in the
stability of flow since it controls the reflection of waves from the shock and the radiation
of energy in the shock layer whose thickness scales with y -1,

Early experiments such as those described in [2] showed that for a practically irteresting
class of flows, the shock Jayer becomes very thin compared to the boundary layer near the
nose of hypersonic flat plates. This feature and the desire to further understand the shock
and boundary layer structure encourages the use of the Newtoniun approximation Y-l
The connection with flow stability motivates the study of this approximation in an
unsteady context. In this chapter, limit process expansions will be discussed relevant to
unsteady viscous interactions as a prelude to the analysis of hypersonic stability and
transition. The application of these limits is an unsteady extension of the steady state
analysis of [3]. Although the focus here is the treatment of viscous interaction, boundary
layer stability, receptivity and transition, the results derived are uscful in inviscid
hypersonic unsteady aerodynamic methodology and load prediction as well.

5.2 Analysis

Figure 1 schematically indicates strong interaction flow near the leading cdgé of a
hypersonic body. The viscous boundary layer which is usually thin, occupies an
appreciable fraction of the distance between the shock and body that will be considered

without undue loss of generality a flat plate in what follows. Accordingly F(%,7)=0,in
the notation of Fig. 1. The results in this chapter will be expressed in terms of the

boundary layer thickness function A(%,7)=0, which in the interpretation mentioned in

the Introduction could be the body shape in an inviscid context.
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The unsteady form of the Hypersonic Small Disturbance Theory (HSDT) cquations [9)
are applicable and are obtained as in (7] from limit process expansions of hatted variables
defined as quantities normalized by their freestream counterparts, with p,T,u,v, i the
density, temperature, horizontal, vertical components of the velocity vector, and viscosity
respectively. If the freestream density, pressure and velocity are denoted asU, p_and

p.respectively, then a pressure coefficient used in these expansions is defined

asp=(p-p.)p.U>.

Fig. 1 Schematic of hypersonic strong interaction flow.

With these definitions and the coordinate system in Fig. 1 as well the normalization of the
Cartesian dimensional coordinatesx and ¥ to the unit reference length L and the

reference time scale L/U for the time 7, unbarred dimensionless normalized counterparts
of these independent variables are defined. If M_and R_ are respectively the freestream

Mach and Reynolds numbers, and§ is a characteristic flow deflection angle, then the
expansions are

;S(x.y.t;M_.R_.y)=o(x,y.:;H.y)+--- ' (L.
i': T+. . (1-2)
p=5p+- (13)
=14 (1.4)
[I=[-H"". (1.5)

where y = ¥/(L8) . These expansions are valid in the HSDT limit
x.y.0,H n—,‘:’—%— are fixed as 6 =~ 0,

1

where H is the hypersonic similarity parameter.
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In (7] and elsewhere, e.g. [1), [8] it was shown that & = g wheree = Re" -0 for
strong interaction flows.

Substituting (1.1) - (1.6) into the Navier Stokes equations and shock conditions gives the
following HSDT unsleady equations and boundary condmons

g 3 - dov , : ' .

(3.9 3) 1 | -
(5*5;*”'5)"“a3y I | - 49
d 9 dYp+H | |
[5:*"“”-—)(%-—/1)30' (1.10)

In what folléws the boundary layer will regarded as an effective body, since in the strong
interaction regime, the density of the flow approaches zero as the edge of the boundary

layer is approached(8], [1], and [4] so that the latter is streamline in steady flow. In -

- unsteady flow, it is plausible that it is a streakline. From Fig. 1, denoting the ordinate of
this surface as = §A(¥,7) then following [3] for steady flow, the body coordinates

introduced for later use in the Newtonian limit are

= y—A(x,f) BN (RT)
Vizvey, (1.12)
v, 2v(x,A)=A, +4, o (1.13)
=t ,' , (1.14)
X"=x ' (1.15)
0Sy"sG=g-A. ~ (1.16)

The quantity v, represents the vertical velocity component at the boundary layer edge.
Equation (1.12) is derived from the property of this surface that it is a strcaklmc

Representing this line in the implicit form B(X,¥,7) =0, where
B=y-A(x,1)=0, v _ | ‘ (1.17)
the Stfclak)inc property can be expressed as
| B +§-VB=0, " (118)

where § denotes the flow velocity vector. Substitution for g (1.4) and (1.5) into (1.18)
gives (1.12).

53




SC71062.FTR

Defining the convective operators as

2 4

D= -5:_'+ = (1.19)
a a d d I Jd

Eaat_+3;7+v-a—v:-al+§;+vay. (1.20)

the HSDT equations written in these coordinates are
Do +(ov"), =0 | (1.21)
b4 .

Ev'+DA=0" P, (1.22)

E(-’f—,’fﬁ’-) =0. (1.23)
o

If subscript § denotes evaluation on the shock, the shock conditions in these coordinates
are

o2 __ip |
v,—7+l[D(G+A) D(GM)} DA (1.24)
2 2
p,-;—:;[D(G#»A) - H] (1.25)
- [D(G+a)
- LY(_) ) 5 .26)
+L°=[D(G+8)]

7:1' y+1

Recognizing that the shock layeris O(y ~1)as ¥ = [ ,and H — o0, even in the unsteady
case, the following Newtonian limit process and expansions are used:

SV A N | ‘
Nul.t.x.ynl mﬁxcd.as/.-y“—-)o (.27
px’y ") = p(at ¥ %)+ (1.28)
o=38r- | (1.29)
v=AV+- (1.30)
8(x" Y )= A" )+ AZ (X" 1" ), (1.31)

where N is the Newtonian similari* parameter.

Substitution of (1.28) - (1.31) into (1.21) - (1.23) and (1.24) - (1.25) as well as retaining
like orders gives the following unsteady Newtonian equations and shock conditions:
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Eg+65, =0 | . (13
5 | .
EsD+v— ' c (133
Eederm | (1.33)
| : ‘
D’4+Eﬁ;=o, , ' o - (1.34)
(BY . ' '

—i=0. - 35)

| E(& 0 o | | (1.35)

On the shock,
L - N o ‘ :

y,zv(x.g(x.t),t):l)g —-D-Z-DA - ‘ . (136)

Bs=(DAY? | (1.37)

_ (DAY | a
US-‘IN""(DA):'. (1.38)
| Eq. (1.12) implies the tangency relation
(' 0.0=0. | - (1.39)

The initial boundary value problem comprised by (1.32)-( 1.35), ( 1.36)-(1.38) and (1.39)

can be simplified by an unsteady extension of the Von Mises transformation. Introducing

an unsteady stream functiony
y

;=6 -Dy=&v. | (1.40)

an unsteady extension of the Von Miscs mapping is considered in which

(x'.Y.r')-é(é.n.t,v).' - . | (.41 -

with characteristic coordinates defined as

fa=g—. n= '2.. | | (142

the differential operators map as follows:

5-5




- 'SC71062.FTR

d 7 L . . ‘
29 _ o 143
%% %% e 08

_ 9 Y

E='BE-GV§§. - - .(1.44)

0 .

~ d : ' .

F-2 , T (145)
% | . o

In this coordinate system, the Newtonian shock layer equations and shock conditions’
become

(é) =7 (1.46)

g/ T

v, +P,=0 (1.47)

7, =4, (1.48)

5

_)_-: n- .' ].49

5 K(x"-1t"y) . (1.49)

Vy=Dg-—-7, | ' (1.50)

Ps=7; - T REED)
-~ - ' ’
v

8 =51 (1.52)

The solution integral given by (1.49) can be interpreted as plane entropy waves *
convecting downstream at the freestreum speed. If the initial state is

K" Dw)= (=), - (1.83)
then at any time ¢°, |

Kx ' yy=f(x'-r'y). _ (1.59)
To match the shock and boundary layers, an “interaction Jaw" relating the pressure and
normal velocity at the boundary luyer edge is required. This matching was studied by
Lees [5], Stewartson [8], Bush [1], as well as Lee and Cheng [4] for steady flow. The

unsteady case has apparently not been analyzed. The interaction law can be obtuined from
integration with respect to i of (1.47) which gives
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P=-V,y+p., (1.55)

where B, = p(x",1°,0) is the pressure at the boundary layer edge. The quantity ¥, can be

- obtained from the second member of (1.43) specialized to the shock value of the stream
function ¥, and the shock relations (1.50) - (1.52). An integration with the assumption -
that the shock intersects the boundary layer and body at the nose gives '

ys=4
(L 56)
Evaluating (1.55) on the shock gives an unsteady extension of the Newton-Busemann
pressure formula. This interaction law is

P, =(DA)* +ADA. (1.57)
Evaluation of K at the shock gives :

~

c'fs :
which with (1.56) gives a pair of relations which parametrically defines the spatial
entropy distribution at each time instant along the various instantaneous streamlines. The
mapping y — y is obtained from the first member of (1.43), as well as (1.53), (1.55),
and an integration as

j Ko "'1)’2";) 2V s sy, (1.59)

=N+(DAY =K(x" -1",y,). B | (1.58)

Evaluating (1.59) at y, gives the shock shape

| g, 1%)=1(x"1",4). ,' , © (1.60)
The density is obtained from the entropy integral (1.53) and (1.55) as »

?

Writing K(x" - 1".y) ® Q(,y) , the vertical velocity is derived from (1.55), the
boundary condition (1.39), und integration of (1.46). This gives

<t

- vi— _..___Q‘n'w’)] V’
o | P -T f : (1.62)
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From the aforementioned attachment of the shock to the body leading edge property
implied for continuum flow, evaluation of Xat the nosc x=0and the shock relations
(1.50)-(1.52) give the density on the boundary Jaycr edge to be

2 2
&'z_A_D_.L(EA:_)_. ‘ (1.63)
N+(DA),,, .

‘5.3 Computations and results
The mapping ¥ = y given by (1.59), can be expressed in explicit form convenient for
numcncal calculations. Introducing independent variables x = x° and 5= x -t ngcs

4.4 dx+aw‘ dt* = DA(x,x - s)dx. (2D

dy(s=const.) =—= 3 Fx

- Substituting (2.1) into (1.59) and accounting for (1 .55) and (1.58), gives

J‘ [A (x,,t+x,-—x)+N]A (x,,t+%,-x)

dx, ‘ (2.2
Al {x.0) = [A (x,, 1+ x, = x)- A(x, t)]Az(x l) .
v =A(x,.x, +t-x) 23)
A,(x,1) = DA(x,1),8,(x.1) = D(x,1). (2.4)

The flow temperature T, pressure p ,and density ¢ at the point (x, ¥) and the time ¢ are

T=A(x.x,+t-0)+N T (2.5)
P p,(x.t)=4,(x. t)w (2.6)
G=p/T. Q@.n

The shock deviation is evaluated by the intcgral (2.2) at the upper limit of intcgration x .
Equations (2.2) and (2.3) indicate that the streamn function y and the temperature T at the
point (x,5) correspond to those just behind the shock at the cross section x, where

y=g(x.0).
If the boundéry layer edge A(x,t) is known function, an unsteady flow ficld within shock
layer can be easily calculated using Egs. (2.2) and (2.5). As an example, consider the cuse
when the boundary layer thickness J, is much less the body thickness. Then

A(x,0)= F(x.1)+(X%8),6=6,/6 -0. (2.8)

Unsteady perturbations produced by the body surface in the zeroth-order approximation
with respect to the small parameter 8 , will be considered. Features of the flow field will
be discussed for the body shape examples
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A=x+ Axe""'a” cos(ax) @9
S A=x+A sin(x—-ary. Q. 10)
x+x,

Shape (2.9) dcscnbes a wedge of a half-angle & with a 2-D hump placed at a distance
x,from the leading edge and oscillating with frequency @ and amplitude A. Shape
(2.10) describes a wedge with a superposed traveling wave modulation starting near the
point x,and propagating downstream with phase velocity ¢ = w/a ; the wave amplitude
achieves the constant value A as x 3 e, '

Figures 2a and 2b illustrate a flow field past the steady hump specified by Eq. (2.9) at
x,=1 with amplitude A =.15, for the Newtonian parameter N =0. For clarity in the plots,

the temperature profile T(5)at cross sections x, = (5/12)k. (k= 1.2....)arc plotted with

constant shift in the abscissae origins AT =0.5 corresponding to the different k. Figure
2a shows that the hump causes local shock perturbation damping in upstream and
“downstream directions. From Fig. 2b, it can be deduced that the curved portion of the
shock induces a non-uniform temperature distribution across the shock layer which can
be interpreted as an cntropy wake convecting downstream along streamlines. If viscous
dissipation is weak, the entropy wake is preserved in the far downstream ﬂow ﬁcld
although the shock and pressure perturbations are infinitesimal.

Similar data are shown in Figures 3a and 3b for the hump oscillating with the frequency
@ =5 and the amplitude A =02. The shock perturbation shape is close to that for the
steady case having an instantancous body surface of the same shape (¢f solid curves in
Fig. 2a and Fig. 3a). Such a quasi-stcady behavior is duc to the infinitely large speed of
pressure disturbance propagation across the shock layer according to Eq. (1.34).
However, the temperature and density disturbances induced dy the curved shock convect
downstream at frecstream speed (see Egs. (1.32) and (1.34)). Because of the time lag and
interference between entropy perturbations, the temperature profiles are quite diffcrent
from those for the steady case (compare Fig. 2b and Fig. 3b). They oscillate across the
shock layer, with decreasing wavelength as frequency increases.

In both stcady and unsteady cases the temperature profiles have inflection points, that can

generate an inviscid instability of the entropy wake for disturbances with short
wavelength and high frequency, (see [10]). It is assumed that a steady or unsteady hump
placed on the forebody of a hypersonic vehicle may be used as a boundary layer trip for
the shock layer flow captured by the inlet. The inflectional entropy luyer may amplify
short-scale disturbances duc to inherent instability mechanisms. Such amplification can
be enhanced by interaction of disturbances with inlet shocks, (see [I1), and [12]).
Ultimately, this process may lead to formation of turbulent wakes. A similar effect might
' be caused by blowing/suction through he portion of the forebody surface. It is
conjectured that such instabilities and tripping mechanism described above can be
useful for initiation or enhancement of hypersonic scramjet combustion nrocesses.
Figures 4a and 4b illustrate flow ficld perturbations caused by the vibration wave of
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Shape (2.10) for @ =10, =5, A =01 and x,=1. It is evident that the shock deviation
grows downstream and ultimately becomes a spike, consistent with the nonlinear nature

of the disturbance evolution. Additionally, the temperature profiles are qualitatively

similar to those over an unsteady hump (¢f. Fig. 2b and Fig. 3b).

As shown in Fig. Sa, the amplitude of the shock vibration wave becomes infinite at a
finite distance from the starting point x,. The wall pressure is equal to zero (sec Fig. 5b)
at this location. Since this is a nonuniformity, the present asymptotic model is inadequate
to describe the flow field near it. However, it is clear that the singular region is identified
as a function of vibration wave characteristics. The vanishing wall pressure vanishing
here can cause an inviscid separation from tne body surface of the thin shock layer. This
process resembles shock separation from the upper edge of hypersonic boundary layer on
a flat plate at zero angle of attack (see [13] signifying that even small vibration waves
propagating along the body surface can initiate a global reconstruction of the flow field.

5.4 Summary and conclusions

In this phase of the rescarch, Newtoniun thin shock layer theory was extended to unsteady |

flow. In earlicr work for steady strong interaction flow, the boundary layer thickness
A ~ x¥* based on the similarity of the initial boundary value problem and intcgration of
the boundary layer continuity equation. An integrodifferential equation for A arises that
admits a similarity solution with the x**scaling. The litcrature assumes either a Tangent-
-~ Wedge or Newtonian impact theory interaction law for the pressure in these solutions.
From the present work, it appears that the proper asymptotically consistent
procedure is to include the centrifugal term in this law (second term in the right
hand side of the steady state version of (1.57)).

Computations performed in a framework of the unsteady Newtonian thin shock layer
- theory reveals the following features of inviscid flow field:

e A local steady/unsteady hump induces stcady/unsteady entropy perturbations
propagating downstream with freestream velocity. It generates inflection points in the
instantaneous shock Jaycr profiles. According to inviscid stability theory, these
profiles should be unstable with respect to short wavelength disturbances.
Downstream amplification of inviscid instability may cause formation of turbulent
wakes within a shock layer. It is plausitle that such a tripping mechanism can be
exploited in forebody-inlet design to initiate or enhance combustion process.

o Surface vibration waves of finite amplitucs cause strong shock perturbations that
grow downstream. These ultimately form spikes due to nonlincar effects. The infinite
spike occurs at & finite distance from the initial vibration point. This singularity could

lead to scparation of a thin shock layer from the body surface and global
reconstruction of the flow field within the shock layer.
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Fig. 2a. Shock deviations caused by steady bump, A =15, x, = 1,0 =0, N =0.
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Fig. 2b Temperature deviations caused by steady bump, A =15, x, =1,0=0,N =0.
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Fig. 3a. Shock deviations caused by unsteady bump, A =02, x, =, =5 N =0.
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Fig. 4a. Shock deviations caused by traveling vibration
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Fig. 5a. Shock deviations céuscd by traveling vibration
wave, A =01,x, =2,0=5N=0,a=35.

Fig. 5b. Temperature deviations caused by traveling vibration
wave, A =01, x, =2,0=S,N=0,a=35.
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6. Similarity Methods for Hypersénic Transition Prediction

6.1 Introduction

- Prediction of laminar-turbulent transition in hypersonic boundary iayers is of critical”

importance for aircraft and missile design [1]. Although considerable effort has been
invested in developing theoretical and computational methods to predict high Mach
number transition, a strong need still exists for approaches suitable for rapid response
design application. To fill this need, empirical criteria based on wind tunnel and flight
experiments are currently the main workhorses in engineering practice. Much. of the
difficulty in constructing a rapid design oriented method is due to the unique features of
the hypersonic stability and transition problem that include strong non parallelism and
shock effects. In spite of the success of e” methods such as [2] below Mach 12, these
aspects are sxgmfican' at higher Mach numbers. '

In this chaptcr, similarity mcthods will be used to indicate a potentially new useful
procedure for preliminary design and fast tradeoff studies. These methods have the

potential of dealing with some of these difficulties. The theoretical basis for the
similarity method will be given and an application to hypersonic cones provided. Finally,
possibilities for generalization of the method to more arbitrary shapes will be discussed.

~ Since the problem of disturbance evolution contains the large Mach and Reynolds
number parameters, it is natural to usc asymptotic methods in predictive models.

Asymptotic theories of the vorticity mode as well as cross flow instability and Gortler

‘vortices as well as [3] are recent examples. Solutions from this class of asymptotic
models are limited in their applicability because of the restrictive asymptotic limit
processes used. Other asymptotic approximations provide more general applicability but

are also more difficult to solve. Even without solution however, such thcories give

important similarity groups, if appropriate normalizations and nondimensionalizations
are used that reflect the salient phenomenological scales. These groups provide the basis
for constructing similarity laws that not only can be useful for design of cconomxcal
experiments, but prediction as well.

Such a procedure will be used in this paper to investigate similitude of boundary layer
~ stability over nearly sharp, zero-incidence hypersonic cones. A similarity rule accounting
for viscous and compressibility effects is derived without solving the initial boundary
value problem. Predictions from the rule are compared with linear stability computations
as well as (Reentry F) flight data obtained on slender cones [4]. It will be seen that this

rule gives an extremely cost-effective and rapid extrapolation mcthod of code or

experimentally derived data to other conditions.
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6.2 Similarity analysls

- The unstéady disturbance field in a three-dimensional hypersonic boundary layer will be
considered with the following assumptions: (i) The fluid is a perfect gas with constant
. Prandtl number Pr and specific heat ratio 7. Denoting starred quantities as dimensional,

the viscosity-temperature law is p‘ = ;l: T ‘.. (ii) The spatial scales of the disturbances
are of the order of boundary layer displacement thickness§°; the time-scale isé” /U, ,

where subscript e refers to the upper edge of the boundary layer. (iii) Boundary-layer
disturbances weakly interact with the external inviscid flow and shock wave.

In the hypersonic boundary layer, the pressure is of the order of that of the external
inviscid flow, and the temperature is of the order of the stagnation temperature
T’ ~(y~-1)M’T, This leads to asymptotic scaling for the flow variables within the

E boundary layer : The full Navier Stokes equations written in terms of this scaling contain

only the lumped parameter R = €“*R, wheree m - <<land Reis the Reynolds

1
(Y—I)Mc
number based on the displacement thickness=Re=8"U, p / u.. The dependence on the
similarity parameter R is valid for strong, moderate and weak viscous-inviscid
- interaction regimes. However, 8° und, as a result, the Reynolds number Re, are sensitive
" to the interaction type. For example, the boundary layer on a flat plate has the
. displacement thickness 8" ~ x™" for strong interaction and&” ~ x™* for a weak one.

QOutside the boundary layer, the disturbances are assumed to vanish and weakly interact

with the extemal inviscid flow . At the wall, the flow satisfies no-slip conditions,

temperature is assumed to be constant. The upstream and downstream conditions as well

as initial conditions for the disturbances are also assumed to depend weakly on Mach and

Reynolds number. These additional provisions preserve the applicability of the R
similitude previously indicated. It is therefore clear that the similarity law

' f=ﬁ'(R’7vaPr) )]

holds, where f is any of the flow dependent variables, 7, is the wall temperature ratio,

and frnsignifies a functional dependence that cun be obtained from solution of the initial
value problem.

This similarity cun be extended to the linear stability problem if a typical ecigenmode

wavelength, A’ is of the order of the boundary layer thickness. If small disturbances are
assumed in the original form of the Navier Stokes equations before the previously
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mentioned rescaling is used, the general linearized equations (LSE).for small fluctuations
are obtained. Within the spatial and temporal scaling implied by the wavelength
assumption, the equations for the fluctuations depend again only on the parameters
7,7, Prand R, if further, their initial and boundary conditions are consistent with this

assumption. Therefore, the fluctuations obey a similarity law such as (1).

As an example, consider the two-dimensional vorticity mode (sccond'mbdc according to
Mack’s classification [5]) in the boundary layer on a flat plate or sharp cone, In this case,
the span component of the wave vector, B =0and the growth rate 0 = ~Im(a) (o =the

complex eigen\}aluc). If the Prandt! number, specific heat raiio and viscosity exponent

parameters Pr,y,w, as well as the wall temperature factor T, = }T"—arc fixed, where T,
' od

-is the wall temperature, T, is the adiabatic wall temperature, the maximum growth rate -

o), (2= Q 6 / U the non dimensional fmquency) is a function of Rcynolds number
Re and Mach number M :

In Fig. 1, calculations for o, from a linear stability code arc shown as a function of the
' similarity parameter RatM, = 7, 8, 10, 12 and 14. The following parameters were used
in the computations: Pr = 0.72, ¥ = 14, T,= 0.2 and @=0.75. The stability
characteristics have been computed by solving the eigcnpi'oblem for the LSE system of
equations [5). In this procedure, the mean flow in the boundary layer was approximated
by the hypersonic weak interaction theory self-similar solution. Note that the similarity
givan by (1) collapses the ¢,(Re,M,) curves to 0,(R) at moderate values of R, as
Mach number increases. At sufficiently large R, the curves tend to spread, because the .
wavelength of the vorticity mode A" <<8" and Assumption (ii) is violated. This is -
consistent with the asymptotic theory for inviscid disturbances according to which the
vorticity mode is concentrated in a thin transitional layer at the upper edge of the
boundary layer. However, the region where sxmnlamy works well is sufficiently wide and
relates well to practical applications. :

T S N T S
=) W
"

Fig. 1 Maximum growth rate as a function of similarity pnram'étcr R at various local
Mach numbers M,.
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6.3 Application of simllarity In hypersonic transition prediction

Hypersonic cones are used as a focus to explore the use of similarity in transition
prediction herein. Refcrence [4] provides transition data for a slender cone at freestream
Mach number 20 during reentry from altitudes of approximately 30.480 to 18.288 km,

corresponding to the region of freestream Reynolds number 6.56 to 52.5 x 106 per meter.

“Experimental points representing transition onset Reynolds numbers Re,, =U,x. /v,

«ir

(v,= kinematic viscosity) as a function of local Mach number M, are shown by the

symbols in Fig. 2 In the figure, 1 denotes the sharp cone, I signifies entropy layer

swallowing by the boundary layer close to the transition location and III represents

swallowing downstream of transition. The similarity relation (1) applies for Regimes 1

and 1.

) $C.12048 070804
104 7 T T T

P
_ ’:/ m—”‘—n-.t.-

:
fo
1wl [Vl —t

0 2 /4 ¢ & 10 12 14 18
M,
Fig. 2 Comparison of present theory with flight experiment. Solid line: theory,
symbols: experiment.

Because of recession of the nosc tip during reentry, the local Mach number at the upper
edge of the boundary layer depends on the nose-radius history. The maximum M,

corresponds (o a sharp nose. As the tip is blunted, the boundary layer grows in a higher
entropy gas with smaller local Mach number. The transition Reynolds number depends
on the location of the region where the entropy layer is swallowed by the boundary layer.
More details are given in Ref. (6] of how this physics is related to the change in the
monotonic trend of the Regime I data shown in Fig. 2. For Regime I, only local
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similarity rather than the global similarity (1) is valid that is associated with almost
constant boundary layer edge flow quantities. The latter corresponds to sharp cone
similitude at a given local Mach number. For this case, the flat plate mean flow viscous
interaction parameter y m (y-1)M>\[Re,, (Re,mU.x"/V}), derived in Ref. [7] is
related to transition onset. The assumption of weak interaction ¥ <<1 is well satisfied by
experimental data of {4]. From [7], and application of the Blasius formula locally, the
boundary-layer dxsplacement thickness &, Jocal Reynolds number Re and similarity
parameter, Rare , '

I+0

&= € TAJux 1o, (2
I+ : . ’
Re=Ac % [Re,, | 3)

using the perfect gas law, energy invariant, and the previously stated viscosity-
temperature law, where A = the constant of proportionality in this law.

In (2) and (3), A’ is a weak function of M,. In the hypersonic ]irriit, A is assumed
independent of M, . This approximation simplifies the prediction of the transition onset

location that can be estimated by the e” method. The amplification factor N for the two-
dimensional second modc can be represented solely as a function of the similarity
parameter Ras :

. x‘ 2 R
N(,x") -‘j g'dx’'==| o dR,
) - A
[}
whereo *» 08”. Applying the transition onset criterion N = N, where N,, is the critical

amplification factor that is assumed to be a constant for Regime III data from [4], the
corresponding similarity parameter R, can be obtained. According to (3),

Re,,, =€ ™ AR}, Since N, =const independent of Mach number M, and from

N= N,,(R). R, also =const, independent of Mach number M,. Therefore, the
similarity rule

(RC" )‘ | =( M‘L)Z(Wl) (4)
(RC,,, )2 M 2 '

is obtained on use of the definition of £ and the fact that the other parameters are fixed.

Equation (4), shcwn in Fig. 2 as a solid line for @ = 0.75, agrees excellently with flight
data and provides a useful prediction tool that can be applied for other zero incidence
cones. With (4), characteristics at new Mach numbers can be obtained from computed or

experimental points corresponding to a particular cone geometry and wall-to-freestream
temperature ratio.
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6.4 Discusslon, future work and conclusions

- Effort is in progress to extend the applicability of the similarity method to more general

shapes than cones and treat angle of attack cases. In this connection, it should be noted
that similarity gives a relation between the local characteristics of the boundary layer. The
simple form of the similarity rule (4) was obtained under the assumption that the mean
flow parameters at the boundary-layer edge are constant. Similarity appears also to be
valid for transition due to some local process that is typical of nonlinear by-pass
mechanisms. If transition depends on the disturbance strcamwise history and the mean
flow has a non uniform distribution in the x, z plane, similarity can be used to relate
disturbance characteristics between two streamwise stations and account for the global
process leading to transition. From thee” method, the growth rate & can be extrapolated
to the new set of conditions at each point using similitude. This can be used to determine
the amplification rate N to predict the transition Reynolds number. Since this apprcach
would be derived under the other general conditions used here it would not only be
applicable for more complicated geometries but linear and nonlinear regimes as well.
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7. Transonic Wind Tunnel Wall Interference

7.1 Introduction

A central problem in aerodynamics is predicticn of vehicle flight characteristics from
wind tunnel tests of subscale models. Major factors in extrapolating the tunnel results to
free flight are Reynolds number scaling as well as wall and sting interference. Currently,
the issue of U.S. wind tunnel modernization is being addressed. A major thrust is attain-
ment of near-flight Reynolds numabers. If large models are used, wall and sting interfer-
ence are limiting factors in obtaining a tunnel flow even qualitatively resembling that of
flight. In particular, testing at transonic speeds can produce steep wave fronts that reflect
back on the model. Porous and other types of ventilated walls have been developed with
- the aim of canceling these refle “ions. In spite of the advances made in this technology as
well as computational simulations, much still needs to be done to understand the tradeoffs
in sizing wind tunnel models and tast sections to minimize wall and sting effects while
maximizing model Reynolds numbers. o

References [1]-[3]) exemplify early treatments of lifting flat plate wings in porous tunnels
at subsonic speeds. This work did not address important nonlinearities associated with the
transonic regime and assumed small wing dimensions compared to that of the test section.
No framework was developed for systematic improvemnent of the approximation, and to
our knowledge, the results were not compared with experiment. Computational treat-
ments of transonic flows are discussed in [{4]-[6] which remedy some of these deficien-
cies and deal with realistic airplane shapes. The large scale (CFD) computational ap-
proach can model geometric complexity and nonlinear effects but is usually expensive
and time-consuming. Although considerable progress has been made, much user inter-
vention is still required for geometric pre-processing to mate structured and even unstruc-
tured grids to the 3-D surface topology. This is an important issue for the test engineer
who needs to quickly size the model, make test plan adjustments during the test and in-
terpret the results afterwards. Combined asymptotic and computational (CAN) methods

are discussed in {7] and [8] that address this need.

Fig. 1 Schematic of confined slender airplane.
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These approaches reduce the size and computational intensity of the nonlinear problem
ard provide frameworks for approximation precedures that are capable of systematic re-
finement

As examples of the CAN approaches, [7] and [8] discuss transonic blockage interference
for confined slender shapes such as those shown schematlcally in an 1 and lift interfer-
ence for high aspect ratio wings. ~

In this section, improvements of our previous theories will be discussed in four major ar-
-eas delineated in the contract Stztement of Work (SOW). These are:

1. Treatment of lift interference
2. Extension of large wall-height blockage interference to moderate height case
3. Porous wall effects

4. Non-circular wind tunnel test sections

7.2 Lift interference and porous wall effacts

The thrust of this activity is to develop a systematic asymptotic framework for computa-
tion of lift corrections due to the interaction of a slender model with walls. Because of the
resemblance of the asymptotic developments, to those for transonic flow, the subsonic

case was considered for convenience. As indicated later, this approach actually seemed to
- provide good comparison with expenmem at near-sonic speeds. The treatment was gcn-
eral enough to address Item 3.

raby(a)

1]

Fig. 2 Schematic of slender wing.
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Initial developments under this contract are described in [9]. There, the free field 2nd
wind tunnel problem of the incompressible flow over a flat wing of arbitrary planform in
a circular wind tunnel test section was outlined. An in-depth continuation of that intro-
. ductory treatment will be summarized in what follows,. Expansions of limit process type
have been used to the study the matching process in greater detail than in the preliminary
analysis of [9]. In addition, the second order inner approximation has now been derived.

; Letting ¢ be the vclociiy potential, limits involving the semispan of the wing b and the
angle attack o have been considered. Near the wing, a limit process in which 5= 0 is
used. Refemring to Fig. 2, an inner limit is deﬁncd as

, : 1
{)“’" =x+aby,(x,y’ 2")+ab’ log-}-’-(pz, (x,y .2 )+

N
ab’p,+
where the inner limit is
a=‘mna.A=a/b,y'ﬁylb,z'-ﬂ'z/b.ﬁxédasa,b—eo )

In (2), the characteristic wing chord is fixed while the semispan & and angle of attack &
tend to zero at the same rate. Near the wing, cross flow gradients dominate and these pa-
rameters give the characteristic lateral scale of the flow which is b. Equation (1) is an
inner expansion for the velocity potential @ in terms of approximating perturbation po-
© tentials@, (v = order of the approximation). It contains the “switchback™ term (p,, and

the indicated gauge functions in anticipation of matching.

The problems for the ¢, are obtained by substituting the asymptotic developments into

the exact problem for @ . For this exact problem, the equation of motion for the velocity
potential is

N Vi®=0. )
Bemoulli’s Equation-is '
pa’ ,_pU’
| > ~—+P= 2 ——+P,. o 4)
The equation of the body is
B=y+ax=0, ‘ (5)
On this surface, the tangency boundary condition is
 §-VB=0. | (6)
Darcy’s law :
AP ~ RV, - )]

is used to model the porous walls, where,
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AP = Pressure difference across wall
R = Flow resistance constant
V = Transverse velocity.

The dominant orders in (1) solve harmonic boundary value problems in the cross plane
perpendicular to the freestream and the higher orders solve Poisson problems. In particu-

lar, substitution of the inner expansion into the exact probler:, gives the following prob-

lems:

AP =0, +¢.,,.}

. (8a)
‘Ply (x,-Ang ) =-]
Ao, =0
P2 . (8b)
Py, (x~Ax,27)=0
A'T(PZ = ;(plu
4’2,- (x,—Ax,z') = "%,(X."AX,Z.) (8‘:)

Problems (8) require far field boundary conditions for r* = y'2 +2'* =00, These come
from matching.

The dominant inner approximation from (8a) provides a first estimate for the flow and
pressure field of the wing. The leading edge square root singularities dominate this flow
field which is the stagnating flow on a finite flat plate. From a Joukowski mapping to the
circle plane or the Circle Theorem, the solution of the problem (8a) is

o, =-£Re{[a’ -s]" -o} o=z +i(y' +Ax) 9

in which the freestream velocity has been normalized to unity through the non-

dimensionalizations in (1). This solution has the proper far field (downwash at infinity)

related to matching with outer solution.
A similar procedure gives the following for solution for ¢,, which is

g =—Re(ss) Vo7 -7 (10)
This satisfies the surface boundary condition in (8b).

The far field for @, us r = «is also needed for the matching. This can be obtained from
particular solutions of the Poisson equation in (8¢). This gives

7-4
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?, 5—-;-(.9:’)'(r'cos9)logr' +hy(x)y" 4+ as r —3 oo,

Refinements of the unconfined flow field and wall interactions come from coupling with |
the far field. An outer expansion involving an O(1) transverse length scale as b0

gives a semi-infinite line doublet for this part of the flow. In particular, for an outer limit
x,¥,2,A fixedas a'.‘b -0,

the appropriate outer expansion is

g-i.}—u-:x*“bzmx’y,i)+'i'- . (in

The quantity ¢, solves the following problem:
Bh=4,+4, 4, =0

_ 5 (x)cos8 |
é(x,r0)= >

@&, (x.h,0)+ B (x.h,6)=0

asr—=0 : (12)

where r= 1} y*+2%,1an8 = z/ y and the last relation is the approximate form of Darcy’s
law. ‘ : :

The solution of (12) can be written as

= -2};}'% . 7(:%%—?%—; + wall correction function (13)

where the first term is a line doublet dictribution of strength D(&) that satisfies the sec-
ond relation of (12). The wall correction function is needed to satisfy Darcy’s law in (12).
In (13), the Kutta condition at the effective trailing edge provides the appropriate con-
tinuation of the line doublet to downstream infinity and its convergent integral represen-
tation. Furthermore, (13) gives upstream influence not present in the inner solutions.

The inner expansion of (13) can be obtained from the r — 0 expansion of its Fouricr
transform. Tlis gives :

o= D(x)cos®@ D”(x)

1 2 r n

{%logr- %}cose - G"(x)-;-cose +my+--as r=-»0
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where

D(x,)r B*(K.q+K,)1, -qlo)+q’1,K,]_, g(x=-¢&)
my = cosf sin

r xp , -
2h* A T2’ J;D (§)a'§jo "[ Bl ~-1) +4*I} h

Br (4, - q’ g(x-%)
'°°“Q{2zzh’ LD (‘5)"4; Blal - 1)+ 1 " & d"}

A= 1for B=1, (includes porous and closed walls)
= -1 for f§ = 0,(free jet), (degenerate limit § — 0)

6= -5= | D@senx-Hrog e - g
o0

5’(x)

D(x) = 2

a

: : (16)
where A is the wall height in units of the body length and the term my in (16) is the wall
interaction effect due to the imaging of the doublet in the walls. As an altemate approach
for the first term of (13), the integral can be directly expanded for r — 0. This delicate
procedure is described in [10). In the Fourier integral method used, the solution naturally
decomposes into a free field (no walls present part) and a wall interaction portion as indi-
cated in (19). Special limiting processes of the singular integrals were developed to han-
dle zero and infinite porosity, correspending to solid wall and free jet cases respectively.
Equation (19) agrees with the results from [1]-{3] in the limit of vanishing chord to tunnel
radius ratio. In future work, (19) will be used to compute the camber effect associated
with non-vanishing chord. To our knowledge, this study has not been made and we be-
lieve it is an important factor entering the comparison of our results with experiment to be
discussed.

The inner and outer solutions match directly to the orders to be considered here.* This
can be shown by expressing each in terms of an intermediate variable r. . For this pur-

n
pose, an intermediate limit

r = —— fixed as b — 0 a7
. as ’
Tomo)

is used to compare the inner and outer representations in an “overlap domain™ r, = O(l)
in which both expansions are mutually valid. Note in the intermediate limit

*Other applications exist where intermediate expansions is required.

dg
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r b
r —g;-—iw r=nr, - 0, ‘T','(I;‘)'“-)” nb) - 0.
The matching process consists of writing inner and outer expansions in terms of the in-

termediate variable r, and comparing similar terms to determine unknown elements. Car-
rying out this process, the two expansions appear as follows in intermediate variables

, 2 1 o ,
(nner ab s (x )co 8+ 0 +ab’log Ib +(o,,(—-— 9}

: mnr, n 2 \ b’
B F )
G % |
* 4ab’ —-]-(s.;')'p-rlcoéa(lognr +logy)+hz(x)cose 4oee
I ) b " bIm 2% -

, D(x)cos8  D*(x)( 1y ) ( G"(‘x)) }
2 ——lne  — - Farn
& Outer = ab { w o, ( P) lognr, 3 jcos9+ m 3 nr, cos@

(18) ‘
Based on (18), the followmg relations hold

L ,O(ez’.l - D 5w
D n )

; 2rn 2
,' - O(ab* log _sz:)'z (s5')
l . D”(X) ] Gll(x) (SS’)’ G”(X) .
] 2.0y, — = - p
A S T R tmes h(x) (19)
4 . O(ab*nlogh): switchback term

1.6 Ir’"cme
b 2 b.

=S¢, = (ss)y as r’ — oo

Note that in (19) the cssential wall interference effect is thc additive term m affectmg
h,(x) in the O(ab’n) matching relationship. Another viewpoint is from (8b), the solution

" of which consists of a superposition of its homogenous solution (response to homogenous
equation of motion and boundary conditions) and the effects of the forcing terms in'the
equation of motion and boundary conditions. Thc homogeneous solution is non-trivial
because of the downwash far field associated with the line doublet imaging in the porous
walls. Another interesting point s the surprising appearance of switchback terms. These
normally are associated with transonic flow. They arise in this subsonic flow from loga-
rithmic elements in the expansions.

The second order inner refinement of the free field lift and pressure distribution comes
from the problem (8¢) (complemented by a fur {ield condition) for the inner potential ¢,.

Techniques used to solve this problem involved matching considerations and exclusion
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principles disallowing aperiodic logarithmic parts and removal of unallowed leading edge
singularities to maintain finite forces.” The inhomogeneity in the cquatxon of motion was
treated by a particular solution ¢, satisfying

-g—-%:— (Im( ~-Jo? -5 ))u.

where & is the complex conjugate of . Other solution components are supcrposed to
satisfy the far field boundary condition involving the free ficld and the wall correction to
the downwash. Our analysis resembles that of Wang [11] in some respects who in con-
trast to our effort did not consider wall interference which is the central thrust of our
work. Problems such as (8¢) are typical of the transonic case.

3 SXE 1310y
0.14—— T T T T T T}
————122% H
o t de ‘b ~
___-vatmz}c"7ﬂtl[1’7’5] €
0.12¢+ .’
CL = i— K™ o= perforated wall
ol correction factor %/ =
C M.2099.122% P /

o.10}- e
O M.=z1.02.122% T.128

- 8 M,=0991.i0% [ oxperiment

® M, =102 1210%

0.08f- .
= _.(:Ih .
0.08 :-.‘*_ -
b
CL - .
0.041- -
- .
0.02}- R
0 ]
.

-0.02

<0.04

-0.083 ) 0 1 2 3

n degrees
Fig. 3 Comparisen of lift interference theory with TSAGI experiment.

"More details will be in our paper to be presented at the 1* ALAA Theoretical Fluid Dy-
namics Meeting. June 1996, New Orleans, La.
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Integrauon of the pressures on the wing gwe the following cxprewons for the hft L. For
the free ficld,

L L] ’ o
;a-;-b‘ tana 2. +b log;’-tan_af,ﬁb‘tanaéﬁ... (20)
where
vf "j [¢1 _, o
ol foukie <3670 T

£2=f_.[¢z|]‘12'= 3:1/2)(“‘]08 ) "[GTE+S ‘ A'Z\.:
The dominant term for the lift ¢, and pressure distribution agrees with Jones® theory

given in [12].

As an experimental validation of the lift mterfcrence theory, Fig. 3 compares lift versus
angle of attack predicted by the our asymptotic theory with transonic tests of a wing-body
combination at TsAGI in Moscow and reported in {9]. It is striking that the incompressi-
ble theory agrees so well with the experiment for the high transonic Mach num-
bers M = .99 and 1.02 tested. Plausibility of this finding is related to the elasticity of
slender wing theory to no( so-slender planforms as M — | as discussed in [13]-{14].
Approximations of wall interaction integrals give the porous wall corrections for wall
openness factors f = 2 and 10% indicated in the figure. It shows that the experimental
trend with increasing f is captured by the lift interfcrence theory for vanishing chord to
tunne! radius ratio. However. the comparison with the data shows an increasing slope
with incidence not captured by the first order theory. Preliminary indications are that the
free field second order effect shows a reduction in lift slope is counter to experimental
evidence. It is likely that the reverse trend is due to leading edge viscous separation and
vortex formation as well the need to account for the finite chord of the wing. A refine-
ment accomplished is an estimate of the effect of a vortex at the wing-fuselage juncture
occurring at higher angles of attack. An oil flow visualization of this phenomenon from
the PI's Russian TsAGI cxperiment reported in [15] is shown in Fig 4. Results from a
preliminary model based on conical invariance of the vortex field is shown in Fig. 5. The
improvesment in agreement is striking and suggestive of the importance of modeling dis-
crete vortex effects. In spite of thesc, the wall interaction theory shows promisc of model-
ing relative trends. As in the blockage theory work for wall height of the order of the
body length to be discussed, estimation of the absolute levels can be improved independ-
ently of the interference estimations using vortex dynamic and leading cdgc separation
.approaches such as that just mentioned.

The main point of this effort is that it provides a natural launching pad for extension of
the theory to nonlincar transonic flow, accounting for higher approximations, thickness,
viscous interactions and finite chord to tunnel height as well as systematic higher order
refinement. With the exception of switchback terms and gauge functions, the inner prob-
lems for the transonic case are expected to resemble those associated with the incom-
pressible asymptotic theory. However, the outer expansions will solve the three-
dimensional Karman-Guderléy instead of Laplace equation in the dominant approxima-

79
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tion, and forced versions in the higher orders. However, a major simplification of the
usual lifting surface (transonic small disturbance theory) numerical problem is anticipated
since the angular variation can be separated out by matching with the inner multipole
structure. ' ”

———,

Fig. 4. Wing-body-juncturc vortcx formation in TsAGI wind tunnel.

g2 -~ !
l
1 ‘e
{
215 o
. hi el
) L Y0 LE VORTEY € 31~-/2ViRa '?/ - }
. A -
01 = .. . vORTEX C.ai-’2 ..na--u.')"-;'g/""{g-u "y
; . y= 99, r=2° -’

2,

w=zr 02, rz2s ) 1
< 208 - 2 vs.93. Paton ﬁ: ’ H
- ¥%1.02, Fergs - :

«

-2 1 5 : 2 3 '

a .degen:s)

Fig.5 Compurison of vortex improved theory with experiment.

7.3 Extension of large wall-height blockage interference to moderats wall
_ height case

Major thrusts of this work in this phase were

l. Validating a transonic small disturbance model for the low in a wind tunnel against
experimental data

2. Vaulidating the equivalence rule for transonic wall interference.

7-10
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Referring to Fig. 1, the walls or pressure interface boundary where pressures are assumed
to be specified from experiment are at r = h, where A is assumed constant for conven-
ience herein (circular test section).® Defining H =6 h, the case (i) H = O(1) was consid-
ered in the research reviewed here, in contrast to the less practical situation (if) in [7]
where H — . As will become clear, the asymptotic solution of the Full Potential formu-
lation, for Case (i) leads to two, rather than three decks associated with (i), i.e., no wall
layer is required, the confined flow consisting only of a nearly axisymmetric “outer” re-

gion and a cross flow gradient-dominated inner core which is the near field of the body.

In an inner limit in which

rrard, K= ( /52 A= qfd fixedasd -0, (22)
where @' is the angle of attack, 8 is the maximum thickness ratio of the equivalent of
body of revolution and M_ is the freestream or tunnel Mach number which will corre-

spond for convenience to the flight Mach number. The inner expansion (near field) of the
slender airplanc model B=r-6F(x,0)=0 is

(x rg M_.a a) _x+(ﬁzloga)&(x)+62¢’(rl’9 ;X)"'--- (23)

where - §, (x) is a source strength dctemuned by matching with the outer solution. The
inner problemis

lﬂl!l

1 ‘
Ap, = (’¢Ir' ),- + r.z‘Px o =0 (242)
a‘Pl FF'(x)
e ¢ N I Sl N 24b
on  JF+F} (@4b)

where n denotes the normal direction to an x=const. cross sectional contour of the sur-
face B =0. Further details are in [13,17]Application of Green’s theorem to (24) shows that

A'(x)
2

ie, the asymmetnc body appears as a line source in its far field of inten-
sity A’(x) where A(x) is the cross sectional arca at the station x of the body B=0. Equa-

tion (25) determines S (x) in (23) as will be seen in the discussion on matching that fol-
lows. :

. The outer limit (with a shght change in notation from Section 2) is
7udr, K= (1-M2)[6% A=afs fixedas § -0, (26)
For (26), the appropriate outer expansion is

%(x,r,f];M-uaoa)=x+61¢l(x'?’8 K,A).’.... (27)

*All lengths are in units of the body length.

7-11.
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Substituting (27) into the Full Potential equation gives the Karman-Guderley ‘(KG) equa-
tion

(K -(y+1)8, . + (7, ), =0 28)

Appropriate to the confined case considered in the research, the approximate Darcy law
porous wall boundary condition for (28) is

¢, (. H,8)+ A4, (x.H.8) =0, 5 - (29)

where A is the Darcy porosity constant. If experimental pressure data is available on the
interface 7 = H, then :

8 (xH.0) = f(x,0) | C 30y,

Appropriate inflow and outflow conditions as well as an inner boundary conditions are
required to complete the formulation for (28) for subsonic far field. The first of these are
discussed in [7]. Gauss’ theorem shows a uniform outflow is required as x —» oo for the
solid wall, (A =0 in (29)) which is linearly proportional to the body base area.

As in the unconfined case, the inner and outer expansions can be matched to dominant
orders. However, intermediate expansions are required for the higher orders. This was
demonstrated for the unconfined case in [13). Matching is performed in the same manner
as in Section 2 using intermediate variables. The appropriate intermediate limit is

r

hE TS fixedas § = 0. @3
Under (31), ‘ '
r'=n—6"1-—)~, ?=6nr,,—)0.n—%€')'->°" n@) —0. (32)

The inner expansion written in intermediate variables is

| 05"“ = x+(2510g8) 5 (x) +62(¢,‘"[E§"—,8;x )+ A (logn A -log&)]-f-'-- (33)

27
1 2 3 4

-where @'® is the portion of @, that is regular at r* =, Terms 3 and 4 arise from (25).

Term 1 in (33) is a switchback term that is needed for matching with the outer expansion.
-In anticipation of matching, the x derivative terms are assumed small and the solution of
the remaining equation
(7¢" )’ = 0'
is
A =S(x)og 7 +g(x)+---as 7 =0,
This implies that the outer expansion in intermediate variables is

7-12
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x,r,0:M_,06 |
Do (321 Z M..0.m) = t+5 {S(x)(log mr, +log5)+g(x)+ } . (34)
1[ 21 3I N .
Matching of Tcrm 2’ in (34) with Term [+Term 4 in (33) 1mphes that
A’(x) ‘ ’
Y : 35
S(x) S (x) = o | (35)

Also, matching of Term 3” in (34) with Term (2) in (33) gives
(p (r B.x) g(x)asr’ —oo .

Finally, Term 1’ in (34) matches with Term 3 in (33) From this matchmg and (35), the
© appropriate boundary condition to complete the forrulation for (28) and (29) or (30) is

lxm re= A 5:) (36)

The pressure on the body can be obtained from substitution of the inner expansion into

the exact formula obtained from the energy invariant
i 2 2 92
a q a. U
7-172 " y-1"72 -GN

where a is the Jocal speed of sound, U is the frecstream velocity and the subscript = re-
fers to freestream conditions. From (37) and isentropy, the pressure coefficient, C, is

. N ,
P-P. 2 -1 A

C, = pU;'= ; [11»"2 M_’,(l--g—;)l =1t (38)
.:i__ “ e ‘ - J ’

where P is the pressurc, p is the density and ¢ = !Zj‘
Substitution of (23) into (38) gives

‘ _C,.__ A%x)

T28° 2z

log8+{<p,‘ +3v o[ }'..F | (39)

( |
for the pressure on the body, r* = F(8;x), where |V, (p,[z iq)h ?_" | . Acrucial
er ‘ S aF

step for our final conclusion about wall interference comes from the interpretation of (23)
and the matchmg between (33) and (34) and the decomposition
= g(x)+ . : (40)
12 ' ,

Term 1 is a component determinzed only by the solution of the outer problem (28), (29) or
(30) and (36). From (36), it is influenced only by the cruss sectional area and not the
cross sectional contour of the body at the streamwise station x as well as the wall
boundary conditions. By contrast, Term 2 depends solely on the inner boundary value
problem (24) and is independent of the wall boundary conditions. These statements lead

directly to the extension of our transonic area rule for wall interference (TARWI)

7-13
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from H—="* to H = 0(1), a major impact of this phase of the research. From this
generalization, more practical situations than those for H —» s can be considered in
which the model distance from the walls is of the order of its length. Thesc are typical of
transonic testing. It should be noted that angle of attack effects are higher order for this
A = O(1)case as contrasted to A = oo cascs wherc they will interact with the near field in

the domiuant orders through line doublet-wall-imaging/reflection-induced downwash.

SdaVew ‘ Front View
LI |
______ T3 — Rt
) il
Top Y ew
- —

Fig. 6 Wing-body tested in TSAGI T-128 wind tunnel.

7.4 Valldations of theoretical and computational simulations for moderate
wall helght case

Experiments in TsAGI's T-128 wind tunnel in Moscow. Russia, described in [9), have
becn performed to validate the theoretical work conducted under the contract. Figure6
shows one of the wing-body configurations tested. Results for pressures over the equiva-
lent body of revolution (EBR) for this wing body are shown in Figure 7 that compares the
combined asymptotic and numerical method developed in the contract with the TsAGI
experiments for the H =0(l) case discussed in the previous section.

The code is quite efficient, requiring only a minute of exccution time on a VAX 3100
work station and orly 100 iterations to obtain the 2000 iteration fully converged solution.
Fig. 7 shows excellent agreement between the theory and experiment. To achieve this
fidelity, it was important to accurately simulate the sting model support. This clement was
necessary to capture the proper recompression process to ambient levels, Additional vali-
dations discussed in (9] are that the shock position estimates from [16) agree well with
the TsAGI measurements. Work continues on specially designed experiments to adjust

* Enunciated in [7,8)
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ihe level of interference by altering the wall porosity. Thxs will provide a useful database
for comparison with the H =0(1) theory.

ady T T ]
-0.4} o Experiment .
= Theory m‘, 1

. ’ dh d = )
0 0.25 05 0.78 1

Fig. 7 Comparison of present theory with TsAGI experiment.

" In 1995, a larger aspect ratio model was tested in the TsAGI T-128 wind tunne] program.

A comparison of the larger aspect ratio wing-body with smaller version is shown in Fig.
8. Figures 9 and 10 compare the drag rise of the smaller and larger aspect ratio wing body
WB1 and WB2 respectively with their equivalent bodies EB1 and EB2 for two different
wall porosities. These are expressed in terms of the wall openness atea ratio, 5 , which is
the arca of the wall perforations as a percentage of the test section cross section area.
Values of y were 2 and 10% for this study. Figures 9 and 10 are, to the PI's knowledge,
the first experimental confirmation of the transonic area rule for wall interference
(TARWT) previously discusse,, ie., if ‘

AC, B Cy| .. ~Cl

[=10% I8

then :
ac,|,,=acl,, 1 @1
where C, is the drag coefficient , subscripts WB and EBR denote the wing-body and its

equivalent body respectively. Figure 10 shows the TARWI (41) has surprising robustness,
i.e., although the aspect ratio of WB2 is considerably larger than WB2, the TARWI (41)
still holds near M_ = 1. This is related to the elasticity of slender body theory to not-so-

slender shapes neur sonic speeds. It is associated with the coefficient of the x derivative
terms in the KG equation (28) being proportional to M, =1 as M_ = 1, where M,_,
is the local Mach number. Thus, although the cross flow gradients are no longer O(18)
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but O(1) for not-so-slender shapes such as WB2, the x derivative terms are still higher
order. Accordingly, the near field remains harmonic in cross flow planes as in the classi-
cal slender body theory. Other robustness of (41) should also noted. Although (41) is
applicable to H = (1), the nominal H is closer to 0.1 for the Figs. 9 and 10 cases. This
is related to the larger Jength body associated with inclusion of the sting in its definition
for the computational modeling. However, if a large part of the sting is at ncarly ambicnt
conditions, H = 0(1) rather than the nominal H = o(1).

As a final comment, new effort in generalizing the experimental validations of the theory
to more realistic configurations has started with 1996 wind tunnel testing of the Tupolev
Tu-144 supersonic transport in the TsAGI T-128 program.® One aspect of the work will
be investigation of the inlets. The model is modular in the sense that it can be tcstr.d with
inlet on and off it. :

9C.41007 000w {Sygy = 04m?)

Fig. 8 Wing-body configurations tested.

* A re-engined, refurbished version of this aircraft is heing prepared for special U.S.-FSU
flight test program to start in April 1996.
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Fig. 9 Comparison of wave drag for wing-body WB1-and its equivalent body EBR1.
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Fig. 10 Comparison of wave drag for wing-body WB2 und its equivalent hody EBR2.
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7.5 Non-circular wind tunnel sections

Many wind tunne! test sections are non-circular. Typical U.S. installations have octagonal
- and rectangular test sections. The PI’s testing in the T-128 wind tunnel strongly suggests
that these non-circular cross sections have only a mild influence on the axisymmetric far
field of a slender model tested at transonic Mach numbers. This observation motivated
the phase of the research to be described.

If the flow near the walls is subsonic which is the case in transonic flow with a subsonic
freestream, it is reasonable to expect rapid elliptic decay of the disturbances inward to-~
ward the centerline of the wind tunnel. This contrasts to other cases such as slightly su-
personic frecstreams, near choking and supersonic bubbles of the unconfined flows pene-
trating the walls. To explore this hypothesis, the flow inside a test section that is a slight
perturbation of circular section will be treated. Figure 11 shows an example of such as
perturbation which is an octagon. For generality, the followmg wall shape .
R=h+eg(0) 42)

in which £<< | and kis a constant. For specific shapes, it is possible to get an approxi-
mate numerical order of magnitude for € whxch can be wrmcn as

gmx gﬂ'l"i
0s8s§ . 0s6s3

P (43)

. €=
Values of £ for square, hexagonal and octagonal test séctions are given in Table 1.

Table 1

Section n 4

uare 4 ’ 414
hexagon 6 . .155
octagon 8 : .082

These are based on the following relations for an n -sided polygon:
2k
sec| §——|-1

g_ n r r ., _

i (”) , Ic4 SGS(k+l)4. k=123,...n, (44a)
sec| ~ [~1 -
. ‘ ‘

g=scc(;-)-l. N (44b)

I the first quadrant,

k=0123,..,n/4,050<7/2.

Using the polar coordinates previously introduced and referring to Fig. 11, as well as the
~outer limit (26) and expansion (27) as well dropping the subscript unity notation ing, , the
cquation for the perturbation potential in the outer region is

(K= (r+1)0, )0 ++77'(F4,), +7 724, = 0. ' (45)
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Tunnel Walls

Tunnel Walls

Fig. 11 Schematic of model in non-circular test scction,
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For convenience, a free jet boundary condition, corresponding to A — = in (29) is con-
sidered. Accordingly, the exact boundary condition
C,(x,R(8)=0

implies A
: ¢.(x,R,6)=0.
Since Ris independent of x, : ‘ o '

‘¢(x,R,8) =constant. - (46)

The constant can be assumed to be zero without loss of generality. Corresponding to (42),
the perturbation potential ¢ can be decomposed into the axially symmetric outer part cor-

responding to £=0 and the sccondary perturbation associated with the dcvxatmn of the -

walls from a circular cross section. Thus, , -
o(x,7,0) = §,(x,7) + &P, (x,F, 9)+ S (47)

Substituting into (45) gives : ' -

{ K-(r+ 1)((1’nx +5¢|‘+,_,)}(¢;u +£¢’n+'")+ |
%(i,(%" _+£¢,,+...))' +-F1;(¢m +€9,, +_“)= 0.

which implies for the respective orders

0(1):{x-(y+1m,,}¢ou+%(7¢°,),=-o_ | .'  (@8a)

. i .
0(6):{K—(7+ l)¢o,}¢)u ‘(7"'1)¢|,_¢n,, +-:.':(?¢Iy)7 +;3¢199 =0 (48b)

Equation (48b) is the so-called variational transonic small disturbance cquatiori consid-
ered in [7,8] in connection with other applications.

Substituting (47) into the boundary conditions near the tunnel centerline gives

. w, _ Ax) (40
l;lg‘)) Fdo; = o (49a)
74, =0,
where A(x)is the cross sectional area. ’ , (49b)
On the (non-circular) cylindrical walls, ' :

Fon = H+€0(6), ‘ : (50)
a Taylor series expansion for the free jet condition (46) gives

o(x,H+eg+....0)= ¢ (x, H + £g+...) + ¢, (x, H +€g+...,.00...

= ¢o(x.H)+£(g¢(,, (x H)+ ¢ (x, ). ).

Equating like orders gives ‘ : :

oM):¢,(x,H)=0 (51a)

- 0(e):¢,(x, H) = -2(6)4,, (x, H). | (5ib)
7-21
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_ A Fourier decomposition to reduce the three-dimensional Transonic Small Disturbance
(TSD) problem “P1” (48b), (49b) and (51b) for a wall perturbation from cylindrical to
one in two-dimensions is

¢ = 2%(x,?)cosn6. (52)

. #=0
This decomposition exploits the fact that the only way that asymmetry is introduced into
the perturbation problem is through the multiplicative factor g(6) in (51b). Note also that
the assumption of small perturbations allows the boundary conditions to be transferred
from the perturbed surface to the simpler cylindrical test section’s. This is essential to the
- reducticn of the dimensionality of the problem. Equation (52) is a factorization that re-
duces the problern P1 to the form

(K7 000 0 7+ 00,00, +2(781,), - 8, =0 (51a)
lim?4,, =0 | (51b)
4 (xH) =4, (x,H)4, (52¢)
4,52} g(8)cosnbab,n>0) | | (52d)
A = -}f 2(6)cosnfdo | | (52¢)

By (40) and the italicized paragraph following it, the function g(x)which controls the '

drag and pressure distribution is the only part of the dominant near field that interacts
with the dominant outer solution. Since their is no 8 dependence in this portion, the only
solution of interest of (51a) is that corresponding to n=0. Thus the effect of the higher
harmonics A, for n> 0 are negligible to this order. Effectively, the angular dependence is
“averaged out”. This is another kind of area rule for the effect of slightly asymmetric
wall sections. ‘

To quantify-this effect, the mild transonic case corresponding to large K in (51a) was
considered. To simplify the analysis, the problem is reduced to a harmonic

(incompressible) one by scaling out K by an x transformation and noting that the second

and thirdv terms in (51a) are negligible in this approximation. The x transformation is
F=x/VK (53)

This is equivalent to another procedure that relates the KG to the Prandil-Glauert (PG)
equation from the definition of K in (26) and the fact that the appropriate outer variable
for subsonic flow is rrather than 7 in the KG regime. This gives the reduced PG equa-
tion

3

1
Praxx +';(’¢|.,), "%%- =0 (54)

where with some redundancy in notation used in a previous section, the transformation
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X=x/B
in which

ﬁ‘zi\fl—M2
is used.

The boundary conditions (51b) and (52c) are unaffected by the large K approx:matlon '
These relations and (54) constitutes the problem PY whlch can be solved by the expo-
nennal Fourier transform pair :

o= "o - ' (55a)
b, =% |_e=6,dk - - ~ (55b)
The subsidiary equation or Fourier transform of (54) is _
a*e, 149, (n* : o
—e s el ] e =0, o - 5 '
art Trdr 7 e, | - | (562)
The transformed boundary conditions are _ v ‘ _ ‘
hmrq =0 : ‘ ' ' : ~ (56b)
8,(rk)= 4, d% (56¢)
r=h

Equations (56) lead to the solution

—~ A f[-L&)da| o
R e )
where I, denotes the modified Bessel function of the second kind of n™ order. Equation
(57) can be further simplified from the solution for the transform of a similar boundary
value problem to P1’ for ¢, This gives ,

de, {Ko(kh)i J(kh) + K, (kh)I, (Ich)} A’
dr,.. S 2z I4(kh) “ 274l (kh)'
where the Wronskian relation is used to get the third member of the equality. The differ-

ence of the non-circular and circular cross section wind tunnel pressures on a body is
given by the formula

AC,mC,|  ~C,| ., =-265"(gi(x)-g5(x)) ;-2ea’¢,°,(x,0), (59)‘
‘where the g, (i =0,1) are the O(1) terms of the inner (r — 0) expansion of the outer so-
lutions for ¢, and ¢, respectively, and § is the maximum thicknest ratio of the body.

The 4, (x,0) for n# 0 do not contribute in (59) since

(58)

I,(0)=1,
1,(0)=0, n>0.

Finally, from the Convolution Theorem, (57) and (58), the changc in thc body prcssurcs
due to wall asymmetry AC,is
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smk

ac =*——AuJ‘A (é)dff (60)

To illustrate (60), a parabolic arc body of revolution inside a square cross section tunnel
is cu.isidered. For this case

n(x)=&(1-x),08x51,
where r, is the body radius. Accordingly,

A=m} =n6(x? - 22" +1*) (61)
and
n
2 i . 62
Ay == {log| ——= |+ = =18l ‘ (62)
(ﬁ-l)ﬂ' mé‘ 2

Figure 12 shows the effect of increasing Mach number on the normalized correction of
the pressures from a circular to a square test section, AC,, where,

ac
Aé’ =~ & . » (63)

ﬂ”2h AO

when h =1 for a parabolic arc body, i.e., the tunnel average radius is equal to the body
length. Note that although the body is in the interval 0< x €1, wall asymmetry influ-
ences the flow considerably upstream of the body nose. Moreover, the largest effects ap-
pear at the nose and tail of the body and the correction increases with Mach number as
expected. Another observation is the rapid upstream and downstream decay of the effect.
This is consistent with the flow ellipticity. Lastly and most important is the smallness of
the effect which is in sharp contrast with the results for A=.5 which shows a dramatic
ten-fold increase with merely halving the wall height. This effect is brought out in Figs.
13 and 14 for M_=0 and .7 respectively. In accord with expectations, Fig. 15 shows that
compressibility increases the change in pressure associated with wall asymmetry.

7.8 Summary, conclusions and recommendations

Development under the contract effort and related work of a number of unique and useful

tools to the wind tunnc] test engineer has been described in the previous sections. These

are:

I. Extension of the area rule for blockage interference to wall heights of the order of the
body length.

2. A systematic asymptotic theory for lift interference.

3. Simplified corrections for asymmetric deviations of circular wind tunnel sections.

4. Emerging database for transonic wall interference theories from Russian tests. Items |
and 2 apply to porous wind tunnels. Item 3 can be readily extended to such sections.
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_ Pressure Correction for Square Walls, hi= 1
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Fig. 12 Pressure corrections from circular to square test sections, parabolic
- body, A=1.

Pressure Cotrection for Square Walls, h = 0.5
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Fig. 13 Pressure corrections from circular to square test sections, parabolic
body, h=.5. '
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Pressure Correction for Square Walls, M, = 0
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Fig. 14 Pressure corrections from circular to square test séctions. parabolic
body, effect of h for M_=0.

Pressure Correction for Square Walls, M_, = 0.7
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- Fig. 13 Pressure corrections from circular to square test sections, parabolic
body, effect of & for M_=.7.
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The ultimate impact of this work is to

o Reduce computational intensity of transonic wall interference cstlmanon
o Hclp optimize mode! sizing to maximize test Reynolds number while mlmrmzmg
' wall interference.

¢ Provide a quick means of extrapolating ground tests to free flight.

To enhance the utility of these tools the following further effort is recommended:

e Apply Items 1 and 2 to corrections to drag polars
e Extend Item 2 to transonic flow, moderate chords, and thickness
e Extend Itern 3 to the moderate K case.
~  Strong evidence exists that the n =0 solution of (5 la) is appropriate to the strongly
nonlinear transonic case. The argument is similar to that following (59).
~ [Itisenvisioned that §’(x) “spiky"” behavior of the variational solution near shocks
will be the principal modification of the solutions previously discussed for the
high subsonic large X case. '
~ Validation of the subsonic solutions against the exact cxgcnfunctxon and elliptic
function Green’s functions should be performed.
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8. Slgnmcance lmpacts of Research Recommendatlons and Future -
Work

Various aspects of hypersonic stability and transition as well transonic wall interference
problems have been addressed in the effort previously described. Major observations are:

1. Solutions exhibiting a special waveguide behavior not previously studied reveal
disturbance amplification and transition mechanisms in which acoustic disturbances
reflect against the edge of the boundary layer as if it were a solid wall. Similar
phenomena occur in the region between the edge of the shock and the boundary layer
sonic line. This work is an outgrowth of the previous effort of the Principal and Co-
Investigators concemning nonparallel and shock effects in hypersonic boundary layers

- as well as waveguide energy trapping that are not modeled by current state-of-the-

~ art stability or transition prediction codes. These mechanisms <empete with
conventional processes such as amplification of Tollmein Schlichting waves and
crossflow instabilitics as paths to transition. Our identification of this physics should
be useful to designers and engineers. They also will be helpful in pre and post
processing of direct-simulations and interpretation of such solutions. It is
recommended that the waveguide solutions be extended to three-dimensional flows
and that unit experiments be performed to validate the results of our theorctical
‘analyses such as those that have been initiated by Maslov and his IPTAM group in
Novosibirsk.

2. We have developed an unsteady Newtonian shock layer theory to treat aeroelastic
and unsteady aerodynamic effects as well as finite amplitude hypersonic stability.
From this model we have discovered inflectional instabilities that can be exploited to
enhance scramjet combustor burning processes.

3. The initial boundary value problem of hypersonic three-tlimensional unsteady
stability has been considered within an asymptotic framework for the first time
to our knowledge. A major contribution is the response of a point vibrator. We
recommend that comparable experiments be performed using the IPTAM spark

- discharge technique. Our work contrasts with previous two-dimensional analyses
such as (Nciland 1970, Brown and Stewartson 1975) for the viscous steady case or
(Malmuth 1993, Blackaby ef al., 1993) for unsteady inviscid flow. Perturbations
within the framework of an initial boundary-value problem instead of the
conventional eigenproblem provide important insight into the space-time evolution of
instabilities and receptivity. A significant impact is that it reveals other instability
paths besides Tollmein-Schlichting, cross-flow, bypass typcs and those mentioned in
Iteml. The main feature is global interaction between shock and boundary layers as
‘well as the role of strong wall cooling in such interactions. Additionally, we have
shed further light on the role of three-dimensionality in connection with upstream
influence in hypersonic strong interactions since the (Neiland 1970, Brown and
Stewartson 1975) studies. With this new knowledge, it is possible to dilineate regions
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of influence from three-dimensional perturbation sources. For steady and low
frequency fluctuations, the mest intensive influence appears in the downstream wake
within the downstream Mach cone. At high frequencies, effects are concentrated on
the source axis. :

This theory gives improved basic understanding of the interaction of separation,
stability and transition. The practical implication for hypersonic vehicle design is that
shock interference heating induced by different devices within the boundary layer and
strong separation can be reduced by techniques suggested by our triple-deck models.
Moreover, instabilities and other unsteady effccts can be exploited to enhance mixing
for scramjet propulsion such as with vibrating elements with tailored or maximized
receptivity. In addition, our analyses could with further development provide
engineers and designers manufucturing and flow quality tolerances for surface
roughness, such as near lcading edges.

We recommend that increased understanding of disturbance propagation from this
phase of the work be used to improve computational schemes. They could suggest
stable and fast running algorithms for hypersonic interactive flows with strong
ellipticity such as shock-boundary layer interactions, and even separated “self-
interaction” flows behind a body flap or spoiler. Other recommended generalizations
that appear within our grasp are more complex flows involving chemical reactions
and radiation.

. Our asymptotic formulations give basic similitudes that we have applied to collapse

hypersonic cone transition data to universal curves which is the basis of fast
preliminary design-oriented aerodynamic and heat transfer prediction methods. We
recommend that our procedure be extended to handle bluntness. This is a major gap in
the design of reusable launch vehicles such as the X-33.

. From a new stability analysis with application of 2 Darcy law boundary condition, we

have obtained strong evidence that absorbing walls such as those associated with
thermal protection systems (TPS) can quench second-mode inviscid instabilities
within hypersonic boundary layers. ¥e recommend that the approach be generalized
to viscous disturbances. Ground and flight experimental validaticns of the tenefits
should be performed so that a practical system can be developed.

. At transonic speeds, our transonic area rule for wall interference (TARWT) was

extended from cases where the wall height parameter in units of the model length
h=o(l) to h=0(1). We have performed experiments in Russia in the TSAGI T-128
wind tunnel that validate this rule. It reduces the problem for transonic blockage
interference from three to a two-dimensions. We have also applicd matched
asymptotics o provide a consistent approximation scheme to cstimate porous wall lift
interference corrections. This theory has been refined in our effort to uccount for the
influence of concentrated wing-body juncture vortices that give nonlinearitics in the
variation of lift with incidence. A recommended refinement is to generulize the
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approximations in the same fashion as those for blockage, i.e., the lift interference
theory assumed that h=o(l). Extension to 4=0(1) will give a camber effect
associated with the variable tunnel induced upwash field along the model length. An
immediate output of our wall interference model is that it can be used to extrapolate
polars from the wind tunnel to free flight or another facility. The TARWT allows this
estimation to be made without the need for a large scale CFD process involving
significant gridding pre-processing. Instead, only a desktop computation is required to
obtain the nonlinear blockage effect. This will help optimize model sizing to
maximize test Reynolds number while minimizing wall interference. Further
validations and extensions of the theory are planned such as our imminent tests of a
4% Tupolev supersonic transport Tu-144 model in the TsAGI T-128 wind tunnel in
the near future. A three view of this configuration and the location of the pressure taps
are shown in Figs. 1 and 2.

Fig. 1 Tu-144 three-view,
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Fig. 2 Tu-144 4% model.
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